Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Ik Seon-
dc.contributor.authorKwak, In Hye-
dc.contributor.authorKim, Ju Yeon-
dc.contributor.authorAbbas, Hafiz Ghulam-
dc.contributor.authorDebela, Tekalign Terfa-
dc.contributor.authorSeo, Jaemin-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorPark, Jeunghee-
dc.contributor.authorKang, Hong Seok-
dc.date.accessioned2024-01-19T19:31:58Z-
dc.date.available2024-01-19T19:31:58Z-
dc.date.created2022-01-25-
dc.date.issued2019-08-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119702-
dc.description.abstractTwo-dimensional (2D) MoS2 nanostructures have been extensively investigated in recent years because of their fascinating electrocatalytic properties. Herein, we report 2D hybrid nanostructures consisting of 1T ' phase MoS2 and Fe-phthalocyanine (FePc) molecules that exhibit excellent catalytic activity toward both the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). X-ray absorption spectra revealed an increased Fe-N distance (2.04 angstrom) in the hybrid complex relative to the isolated FePc. Spin-polarized density functional theory calculations predicted that the Fe center moves toward the MoS2 layer and induces a non-planar structure with an increased Fe-N distance of 2.05 angstrom, which supports the experimental results. The experiments and calculations consistently show a significant charge transfer from FePc to stabilize the hybrid complex. The excellent HER catalytic performance of FePc-MoS2 is characterized by a low Tafel slope of 32 mV dec(-1) at a current density of 10 mA cm(-2) and an overpotential of 0.123 V. The ORR catalytic activity is superior to that of the commercial Pt/C catalyst in pH 13 electrolyte, with a more positive half-wave potential (0.89 vs. 0.84 V), a smaller Tafel slope (35 vs. 87 mV center dot dec(-1)), and a much better durability (9.3% vs. 40% degradation after 20 h). Such remarkable catalytic activity is ascribed to the HER-active 1T ' phase MoS2 and the ORR-active nonplanar Fe-N-4 site of FePc.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.titleTwo-dimensional MoS2/Fe-phthalocyanine hybrid nanostructures as excellent electrocatalysts for hydrogen evolution and oxygen reduction reactions-
dc.typeArticle-
dc.identifier.doi10.1039/c9nr04156g-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.11, no.30, pp.14266 - 14275-
dc.citation.titleNANOSCALE-
dc.citation.volume11-
dc.citation.number30-
dc.citation.startPage14266-
dc.citation.endPage14275-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000484234700022-
dc.identifier.scopusid2-s2.0-85070852373-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusNITROGEN-DOPED GRAPHENE-
dc.subject.keywordPlusACTIVE EDGE SITES-
dc.subject.keywordPlusIRON PHTHALOCYANINE-
dc.subject.keywordPlusMOS2 NANOSHEETS-
dc.subject.keywordPlusPHASE-TRANSITION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusIDENTIFICATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlus1T-MOS2-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE