Full metadata record

DC Field Value Language
dc.contributor.authorJeon, Seung-Yeol-
dc.contributor.authorJeon, Hyeonyeol-
dc.contributor.authorPark, Tae Joon-
dc.contributor.authorKang, Min Kwan-
dc.contributor.authorCho, Byoung-Ki-
dc.contributor.authorHwang, Seung Sang-
dc.contributor.authorHur, Kahyun-
dc.date.accessioned2024-01-19T19:32:33Z-
dc.date.available2024-01-19T19:32:33Z-
dc.date.created2021-09-02-
dc.date.issued2019-08-
dc.identifier.issn1022-1352-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119734-
dc.description.abstractSome polymer mixture systems become immiscible above a specific temperature, the so-called lower critical solution temperature (LCST). In this work, the LCST behavior of a mixture of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) triblock copolymers and phenolic resin oligomers is observed, and the corresponding phase transition is exploited to develop a facile route to hierarchically structured carbon monoliths. Whereas evaporation-induced self-assembly generates hexagonal channels in the monoliths, an additional phase transition at the LCST leads to an ordered arrangement of isolated pores. The fabrication method involves annealing the gel-phased mixture with polymeric microbeads in a 3D-structured mold at the LCST, followed by thermosetting and a carbonization process. The LCST phase transition behavior is observed experimentally by in situ small-angle X-ray scattering, optical transparency measurements, differential scanning calorimetry, and infrared spectroscopy. The fundamental mechanism of the LCST phase transition is further investigated by atomistic molecular dynamics simulations.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectRESORCINOL-FORMALDEHYDE-
dc.subjectBLOCK-COPOLYMERS-
dc.subjectSILICA-
dc.subjectSEPARATION-
dc.subjectPOLY(N-ISOPROPYLACRYLAMIDE)-
dc.subjectHYDROGELS-
dc.subjectNETWORKS-
dc.subjectPORES-
dc.subjectRESIN-
dc.subjectWATER-
dc.titlePreparation of Hierarchically Structured Amorphous Carbon Monoliths with Closed Spherical Mesopores via the Lower Critical Solution Temperature Phase Transition-
dc.typeArticle-
dc.identifier.doi10.1002/macp.201900165-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMACROMOLECULAR CHEMISTRY AND PHYSICS, v.220, no.15-
dc.citation.titleMACROMOLECULAR CHEMISTRY AND PHYSICS-
dc.citation.volume220-
dc.citation.number15-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000478745200015-
dc.identifier.scopusid2-s2.0-85068648682-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusRESORCINOL-FORMALDEHYDE-
dc.subject.keywordPlusBLOCK-COPOLYMERS-
dc.subject.keywordPlusSILICA-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusPOLY(N-ISOPROPYLACRYLAMIDE)-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusPORES-
dc.subject.keywordPlusRESIN-
dc.subject.keywordPlusWATER-
dc.subject.keywordAuthoramorphous carbon-
dc.subject.keywordAuthorblock copolymer self-assembly-
dc.subject.keywordAuthorclosed mesopores-
dc.subject.keywordAuthorhierarchical structures-
dc.subject.keywordAuthorlower critical solution temperature phase transition-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE