Full metadata record

DC Field Value Language
dc.contributor.authorKim, Myeongjin-
dc.contributor.authorLee, Byeongyong-
dc.contributor.authorJu, Hyun-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorKim, Jooheon-
dc.contributor.authorLeek, Seung Woo-
dc.date.accessioned2024-01-19T19:32:36Z-
dc.date.available2024-01-19T19:32:36Z-
dc.date.created2021-09-02-
dc.date.issued2019-08-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119737-
dc.description.abstractTo achieve excellent photoelectrochemical water-splitting activity, photoanode materials with high light absorption and good charge-separation efficiency are essential. One effective strategy for the production of materials satisfying these requirements is to adjust their band structure and corresponding bandgap energy by introducing oxygen vacancies. A simple chemical reduction method that can systematically generate oxygen vacancies in barium stannate (BaSnO3 (BSO)) crystal is introduced, which thus allows for precise control of the bandgap energy. A BSO photoanode with optimum oxygen-vacancy concentration (8.7%) exhibits high light-absorption and good charge-separation capabilities. After deposition of FeOOH/NiOOH oxygen evolution cocatalysts on its surface, this photoanode shows a remarkable photocurrent density of 7.32 mA cm(-2) at a potential of 1.23 V versus a reversible hydrogen electrode under AM1.5G simulated sunlight. Moreover, a tandem device constructed with a perovskite solar cell exhibits an operating photocurrent density of 6.84 mA cm(-2) and stable gas production with an average solar-to-hydrogen conversion efficiency of 7.92% for 100 h, thus functioning as an outstanding unbiased water-splitting system.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectELECTRON-HOLE RECOMBINATION-
dc.subjectCHARGE-CARRIER TRANSPORT-
dc.subjectVISIBLE-LIGHT-
dc.subjectPHOTOCATALYTIC ACTIVITY-
dc.subjectBIFUNCTIONAL ELECTROCATALYST-
dc.subjectPERFORMANCE ENHANCEMENT-
dc.subjectMSNO3 M-
dc.subjectSURFACE-
dc.subjectLATIO2N-
dc.subjectNANOWIRES-
dc.titleOxygen-Vacancy-Introduced BaSnO3-delta Photoanodes with Tunable Band Structures for Efficient Solar-Driven Water Splitting-
dc.typeArticle-
dc.identifier.doi10.1002/adma.201903316-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.31, no.33-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume31-
dc.citation.number33-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000481909600002-
dc.identifier.scopusid2-s2.0-85068122765-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTRON-HOLE RECOMBINATION-
dc.subject.keywordPlusCHARGE-CARRIER TRANSPORT-
dc.subject.keywordPlusVISIBLE-LIGHT-
dc.subject.keywordPlusPHOTOCATALYTIC ACTIVITY-
dc.subject.keywordPlusBIFUNCTIONAL ELECTROCATALYST-
dc.subject.keywordPlusPERFORMANCE ENHANCEMENT-
dc.subject.keywordPlusMSNO3 M-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusLATIO2N-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordAuthorbandgap energy-
dc.subject.keywordAuthorbarium stannate-
dc.subject.keywordAuthorcharge-separation efficiency-
dc.subject.keywordAuthorphotoanodes-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE