Full metadata record

DC Field Value Language
dc.contributor.authorKim, Sanghyeon-
dc.contributor.authorChoi, Jaewon-
dc.contributor.authorBak, Seong-Min-
dc.contributor.authorSang, Lingzi-
dc.contributor.authorLi, Qun-
dc.contributor.authorPatra, Arghya-
dc.contributor.authorBraun, Paul, V-
dc.date.accessioned2024-01-19T19:33:47Z-
dc.date.available2024-01-19T19:33:47Z-
dc.date.created2022-01-25-
dc.date.issued2019-07-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119803-
dc.description.abstractSolid-state batteries can potentially enable new classes of electrode materials which are unstable against liquid electrolytes. Here, SnS nanocrystals, synthesized by a wet chemical method, are used to fabricate a Li-ion electrode, and the electrochemical properties of this electrode are examined in both solid and liquid electrolyte designs. The SnS-based solid-state cell delivers a capacity of 629 mAh g(-1) after 100 cycles and exhibits an unprecedentedly small irreversible capacity in the first cycle (8.2%), while the SnS-based liquid cell shows a rapid capacity decay and large first cycle irreversible capacity (44.6%). Cyclic voltammetry (CV) experiments show significant solid electrolyte interphase (SEI) formation in the liquid cell during the first discharge while SEI formation by electrolyte reduction in the solid-state cell appears negligible. Along with CV, X-ray photoelectron spectroscopy and energy dispersive spectroscopy are used to investigate the differences between the solid-state and liquid cells. The reaction chemistry of SnS in solid-state cells is also studied in detail by ex situ X-ray diffraction and X-ray absorption spectroscopy. The overarching findings are that use of a solid electrolyte suppresses materials degradation and electrolyte reduction which leads to a small first cycle irreversible capacity and stable cycling.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.titleReversible Conversion Reactions and Small First Cycle Irreversible Capacity Loss in Metal Sulfide-Based Electrodes Enabled by Solid Electrolytes-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.201901719-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, v.29, no.27-
dc.citation.titleADVANCED FUNCTIONAL MATERIALS-
dc.citation.volume29-
dc.citation.number27-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000478619900025-
dc.identifier.scopusid2-s2.0-85065158189-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRAPHENE OXIDE COMPOSITES-
dc.subject.keywordPlusX-RAY-DIFFRACTION-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusBATTERY-
dc.subject.keywordPlusSNS-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordAuthorall solid-state batteries-
dc.subject.keywordAuthorirreversible capacities-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthormetal sulfides-
dc.subject.keywordAuthorreversible conversion reactions-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE