Full metadata record

DC Field Value Language
dc.contributor.authorLee, Hye Jin-
dc.contributor.authorYang, U. Leong-
dc.contributor.authorKim, Kyeong Nam-
dc.contributor.authorPark, Soojin-
dc.contributor.authorKil, Kye Hyoung-
dc.contributor.authorKim, Jun Soo-
dc.contributor.authorWodtke, Alec M.-
dc.contributor.authorChoi, Won Jun-
dc.contributor.authorKim, Myung Hwa-
dc.contributor.authorBaik, Jeong Min-
dc.date.accessioned2024-01-19T19:34:02Z-
dc.date.available2024-01-19T19:34:02Z-
dc.date.created2021-09-02-
dc.date.issued2019-07-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119818-
dc.description.abstractThe remarkable electronic and mechanical properties of nanowires have great potential for fascinating applications; however, the difficulties of assembling ordered arrays of aligned nanowires over large areas prevent their integration into many practical devices. In this paper, we show that aligned VO2 nanowires form spontaneously after heating a thin V2O5 film on a grooved SiO2 surface. Nanowires grow after complete dewetting of the film, after which there is the formation of supercooled nanodroplets and subsequent Ostwald ripening and coalescence. We investigate the growth mechanism using molecular dynamics simulations of spherical Lennard-Jones particles, and the simulations help explain how the grooved surface produces aligned nanowires. Using this simple synthesis approach, we produce self-aligned, millimeter-long nanowire arrays with uniform metal-insulator transition properties; after their transfer to a polymer substrate, the nanowires act as a highly sensitive array of strain sensors with a very fast response time of several tens of milliseconds.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCHEMICAL-VAPOR-DEPOSITION-
dc.subjectZNO NANOWIRES-
dc.subjectPHASE-TRANSITION-
dc.subjectQUANTUM WIRES-
dc.subjectVO2 NANOBEAM-
dc.subjectGAS SENSORS-
dc.subjectSTRAIN-
dc.subjectPRESSURE-
dc.subjectGROWTH-
dc.subjectTRANSPARENT-
dc.titleDirectional Ostwald Ripening for Producing Aligned Arrays of Nanowires-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.9b00684-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO LETTERS, v.19, no.7, pp.4306 - 4313-
dc.citation.titleNANO LETTERS-
dc.citation.volume19-
dc.citation.number7-
dc.citation.startPage4306-
dc.citation.endPage4313-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000475533900012-
dc.identifier.scopusid2-s2.0-85069330356-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHEMICAL-VAPOR-DEPOSITION-
dc.subject.keywordPlusZNO NANOWIRES-
dc.subject.keywordPlusPHASE-TRANSITION-
dc.subject.keywordPlusQUANTUM WIRES-
dc.subject.keywordPlusVO2 NANOBEAM-
dc.subject.keywordPlusGAS SENSORS-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusPRESSURE-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusTRANSPARENT-
dc.subject.keywordAuthorVO2 nanowires-
dc.subject.keywordAuthordirectional Ostwald ripening-
dc.subject.keywordAuthorself-aligned-
dc.subject.keywordAuthorLennard-Jones potential-
dc.subject.keywordAuthorstrain sensors-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE