Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Hyeon Kook-
dc.contributor.authorPark, Jae Yeol-
dc.contributor.authorChang, Joon Ha-
dc.contributor.authorDae, Kyun Sung-
dc.contributor.authorNoh, Myoung-Sub-
dc.contributor.authorKim, Sung-Soo-
dc.contributor.authorKang, Chong-Yun-
dc.contributor.authorZhao, Kejie-
dc.contributor.authorKim, Sangtae-
dc.contributor.authorYuk, Jong Min-
dc.date.accessioned2024-01-19T19:34:03Z-
dc.date.available2024-01-19T19:34:03Z-
dc.date.created2021-09-02-
dc.date.issued2019-07-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119819-
dc.description.abstractThe stress inevitably imposed during electrochemical reactions is expected to fundamentally affect the electrochemistry, phase behavior and morphology of electrodes in service. Here, we show a strong stress-composition coupling in lithium binary alloys during the lithiation of tin-tin oxide core-shell nanoparticles. Using in situ graphene liquid cell electron microscopy imaging, we visualise the generation of a non-uniform composition field in the nanoparticles during lithiation. Stress models based on density functional theory calculations show that the composition gradient is proportional to the applied stress. Based on this coupling, we demonstrate that we can directionally control the lithium distribution by applying different stresses to lithium alloy materials. Our results provide insights into stress-lithium electrochemistry coupling at the nanoscale and suggest potential applications of lithium alloy nanoparticles.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleStrong stress-composition coupling in lithium alloy nanoparticles-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-019-11361-z-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.10-
dc.citation.titleNature Communications-
dc.citation.volume10-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000477952600013-
dc.identifier.scopusid2-s2.0-85070908042-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusIN-SITU TEM-
dc.subject.keywordPlusSILICON NANOPARTICLES-
dc.subject.keywordPlusNEGATIVE ELECTRODES-
dc.subject.keywordPlusLITHIATION-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusDEFORMATION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusFRACTURE-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE