Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides

Authors
Barja, SaraRefaely-Abramson, SivanSchuler, BrunoQiu, Diana Y.Pulkin, ArtemWickenburg, SebastianRyu, HyejinUgeda, Miguel M.Kastl, ChristophChen, ChristopherHwang, ChoongyuSchwartzberg, AdamAloni, ShaulMo, Sung-KwanOgletree, D. FrankCrommie, Michael F.Yazyev, Oleg, VLouie, Steven G.Neaton, Jeffrey B.Weber-Bargioni, Alexander
Issue Date
2019-07
Publisher
Nature Publishing Group
Citation
Nature Communications, v.10
Abstract
Chalcogen vacancies are generally considered to be the most common point defects in transition metal dichalcogenide (TMD) semiconductors because of their low formation energy in vacuum and their frequent observation in transmission electron microscopy studies. Consequently, unexpected optical, transport, and catalytic properties in 2D-TMDs have been attributed to in-gap states associated with chalcogen vacancies, even in the absence of direct experimental evidence. Here, we combine low-temperature non-contact atomic force microscopy, scanning tunneling microscopy and spectroscopy, and state-of-the-art ab initio density functional theory and GW calculations to determine both the atomic structure and electronic properties of an abundant chalcogen-site point defect common to MoSe2 and WS2 monolayers grown by molecular beam epitaxy and chemical vapor deposition, respectively. Surprisingly, we observe no in-gap states. Our results strongly suggest that the common chalcogen defects in the described 2D-TMD semiconductors, measured in vacuum environment after gentle annealing, are oxygen substitutional defects, rather than vacancies.
Keywords
QUASI-PARTICLE; BAND-GAPS; MOS2; PHOTOLUMINESCENCE; SEMICONDUCTORS; APPROXIMATION; BOUNDARIES
ISSN
2041-1723
URI
https://pubs.kist.re.kr/handle/201004/119839
DOI
10.1038/s41467-019-11342-2
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE