Full metadata record

DC Field Value Language
dc.contributor.authorKho, Jun Beom-
dc.contributor.authorKim, Jaihie-
dc.contributor.authorKim, Ig-Jae-
dc.contributor.authorTeoh, Andrew B. J.-
dc.date.accessioned2024-01-19T19:34:39Z-
dc.date.available2024-01-19T19:34:39Z-
dc.date.created2021-09-02-
dc.date.issued2019-07-
dc.identifier.issn0031-3203-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119853-
dc.description.abstractAlthough biometrics is considered more competent than password-based or token-based approach in identity management, biometric templates are vulnerable to adversary attacks that may lead to irreversible identity loss. One of the promising remedies for biometric template protection is cancelable biometrics. In this paper, a novel binary cancelable fingerprint template design based on Partial Local Structure (PLS) descriptor and Permutated Randomized Non-Negative Least Square (PR-NNLS) is proposed. The PLS descriptor is an alignment-free minutia descriptor, which is conceived to be coupled with the PR-NNLS to derive a binary protected fingerprint template that satisfies non-invertibility, unlinkability, cancelability and performance criteria. The PR-NNLS formulation is unique in such a way that the noninvertible transformation is applied to the PLS descriptor dictionary instead of applying it to the minutiae descriptor, which often invites performance deterioration. The evaluations have been carried out with five subsets from FVC 2002 and 2004 databases where the proposed method is attested to fulfill the aforementioned four template protection criteria. We also analyze four privacy and security attacks targeted to cancelable biometrics. (C) 2019 Published by Elsevier Ltd.-
dc.languageEnglish-
dc.publisherELSEVIER SCI LTD-
dc.subjectMULTI-LINE CODE-
dc.subjectBIOMETRICS-
dc.titleCancelable fingerprint template design with randomized non-negative least squares-
dc.typeArticle-
dc.identifier.doi10.1016/j.patcog.2019.01.039-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPATTERN RECOGNITION, v.91, pp.245 - 260-
dc.citation.titlePATTERN RECOGNITION-
dc.citation.volume91-
dc.citation.startPage245-
dc.citation.endPage260-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000466250400020-
dc.identifier.scopusid2-s2.0-85062339990-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMULTI-LINE CODE-
dc.subject.keywordPlusBIOMETRICS-
dc.subject.keywordAuthorCancelable biometrics-
dc.subject.keywordAuthorPartial local structure descriptor-
dc.subject.keywordAuthorRandomized non-negative least square-
dc.subject.keywordAuthorBinary representation-
dc.subject.keywordAuthorFingerprint template protection-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE