Full metadata record

DC Field Value Language
dc.contributor.authorJung, Dae-Hyun-
dc.contributor.authorKim, Hak-Jin-
dc.contributor.authorKim, Hyoung Seok-
dc.contributor.authorChoi, Jaeyoung-
dc.contributor.authorKim, Jeong Do-
dc.contributor.authorPark, Soo Hyun-
dc.date.accessioned2024-01-19T20:00:49Z-
dc.date.available2024-01-19T20:00:49Z-
dc.date.created2021-09-02-
dc.date.issued2019-06-01-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119896-
dc.description.abstractPhosphate is a key element affecting plant growth. Therefore, the accurate determination of phosphate concentration in hydroponic nutrient solutions is essential for providing a balanced set of nutrients to plants within a suitable range. This study aimed to develop a data fusion approach for determining phosphate concentrations in a paprika nutrient solution. As a conventional multivariate analysis approach using spectral data, partial least squares regression (PLSR) and principal components regression (PCR) models were developed using 56 samples for calibration and 24 samples for evaluation. The R-2 values of estimation models using PCR and PLSR ranged from 0.44 to 0.64. Furthermore, an estimation model using raw electromotive force (EMF) data from cobalt electrodes gave R-2 values of 0.58-0.71. To improve the model performance, a data fusion method was developed to estimate phosphate concentration using near infrared (NIR) spectral and cobalt electrochemical data. Raw EMF data from cobalt electrodes and principle component values from the spectral data were combined. Results of calibration and evaluation tests using an artificial neural network estimation model showed that R-2 = 0.90 and 0.89 and root mean square error (RMSE) = 96.70 and 119.50 mg/L, respectively. These values are sufficiently high for application to measuring phosphate concentration in hydroponic solutions.-
dc.languageEnglish-
dc.publisherMDPI-
dc.subjectPRINCIPAL COMPONENTS REGRESSION-
dc.subjectSENSOR DATA FUSION-
dc.subjectNUTRIENT SOLUTION-
dc.subjectSOIL PROPERTIES-
dc.subjectSYSTEM-
dc.subjectWATER-
dc.subjectPERFORMANCE-
dc.subjectPHOSPHORUS-
dc.subjectMANAGEMENT-
dc.subjectNITROGEN-
dc.titleFusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution-
dc.typeArticle-
dc.identifier.doi10.3390/s19112596-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSENSORS, v.19, no.11-
dc.citation.titleSENSORS-
dc.citation.volume19-
dc.citation.number11-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000472133300174-
dc.identifier.scopusid2-s2.0-85067791559-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusPRINCIPAL COMPONENTS REGRESSION-
dc.subject.keywordPlusSENSOR DATA FUSION-
dc.subject.keywordPlusNUTRIENT SOLUTION-
dc.subject.keywordPlusSOIL PROPERTIES-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusWATER-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPHOSPHORUS-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordAuthorphosphate sensing-
dc.subject.keywordAuthorMulti-sensor data fusion-
dc.subject.keywordAuthorhybrid sensor system-
dc.subject.keywordAuthorFeed-forward back-propagation ANN-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE