Full metadata record

DC Field Value Language
dc.contributor.authorHong, Jisoo-
dc.contributor.authorChun, Changmook-
dc.contributor.authorKim, Seung-Jong-
dc.contributor.authorPark, Frank C.-
dc.date.accessioned2024-01-19T20:02:06Z-
dc.date.available2024-01-19T20:02:06Z-
dc.date.created2021-09-02-
dc.date.issued2019-06-
dc.identifier.issn1534-4320-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119962-
dc.description.abstractThis paper proposes a Gaussian process-based method for trajectory learning and generation of individualized gait motions at arbitrary user-designated walking speeds, intended to be used in generating reference motions for robotic gait rehabilitation systems. We utilize a nonlinear dimension reduction technique based on Gaussian process dynamical models (GPDMs), in which the internal dynamics is modeled as a second-order Markov process evolving in a lower-dimensional latent space. After the GPDM parameters are identified with training data obtained from gait motions of healthy subjects walking at different speeds, our method then employs Gaussian process regression (GPR) to predict the initial two states of the latent space dynamics from any arbitrary desired walking speed and the anthropometric parameters of the test subject. Motions are then generated by directly mapping the latent space dynamics to joint trajectories. Experimental studies involving more than 100 subjects indicate that our method generates gait patterns with 30% less mean square prediction errors compared to recent state-of-the-art methods, while also allowing for arbitrary user-specified walking speeds.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.subjectCOMPONENT ANALYSIS-
dc.subjectWALKING SPEED-
dc.subjectREHABILITATION-
dc.subjectDESIGN-
dc.subjectPREDICTION-
dc.subjectKINEMATICS-
dc.subjectROBOT-
dc.titleGaussian Process Trajectory Learning and Synthesis of Individualized Gait Motions-
dc.typeArticle-
dc.identifier.doi10.1109/TNSRE.2019.2914095-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, v.27, no.6, pp.1236 - 1245-
dc.citation.titleIEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING-
dc.citation.volume27-
dc.citation.number6-
dc.citation.startPage1236-
dc.citation.endPage1245-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000471121000014-
dc.identifier.scopusid2-s2.0-85067261594-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryRehabilitation-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaRehabilitation-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOMPONENT ANALYSIS-
dc.subject.keywordPlusWALKING SPEED-
dc.subject.keywordPlusREHABILITATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusPREDICTION-
dc.subject.keywordPlusKINEMATICS-
dc.subject.keywordPlusROBOT-
dc.subject.keywordAuthorGait rehabilitation-
dc.subject.keywordAuthorrobot rehabilitation-
dc.subject.keywordAuthorGaussian process dynamical model-
dc.subject.keywordAuthorGaussian process regression-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE