Full metadata record

DC Field Value Language
dc.contributor.authorNam, H.-
dc.contributor.authorKu, S.H.-
dc.contributor.authorYoon, H.Y.-
dc.contributor.authorKim, K.-
dc.contributor.authorKwon, I.C.-
dc.contributor.authorKim, S.H.-
dc.contributor.authorLee, J.B.-
dc.date.accessioned2024-01-19T20:02:11Z-
dc.date.available2024-01-19T20:02:11Z-
dc.date.created2021-08-31-
dc.date.issued2019-06-
dc.identifier.issn2366-3987-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119967-
dc.description.abstractDespite the superb therapeutic potential of siRNA technology, its clinical application are still limited due to the inherent instability and lack of systemic delivery issues. Recently, the development of long-chain siRNA has been proposed as a strategy to improve in vivo stability, particularly for efficient physical integration of siRNA molecules into gene carriers. Herein, concatemeric siRNAs are enzymatically synthesized through a rolling circle transcription process, and form stable RNA interference (RNAi) nanocomplexes with a redox-sensitive glycol chitosan derivative to systemically deliver the concatemeric siRNAs to tumor tissues. The enzymatically generated RNAi nanocomplexes (RNCs) have higher particle stability and less cytotoxicity than the conventional polyelectrolyte complexes. The therapeutic potential of the RNC formulation is verified in vivo as well as in vitro using VEGF as an antiangiogenic target for RNAi-based anticancer therapy. After systemic administration, RNC is specifically accumulated in tumor tissues and shows a high inhibitory effect on tumor growth. According to the results, the RNC can be considered as a platform technology for efficient tumor-targeted siRNA delivery systems. ? 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.languageEnglish-
dc.publisherBlackwell Publishing Ltd-
dc.subjectchitosan derivative-
dc.subjectcircular DNA-
dc.subjectpolyelectrolyte-
dc.subjectsmall interfering RNA-
dc.subjectvasculotropin-
dc.subjectanimal experiment-
dc.subjectanimal model-
dc.subjectantineoplastic activity-
dc.subjectapoptosis-
dc.subjectArticle-
dc.subjectcancer inhibition-
dc.subjectcancer therapy-
dc.subjectcell viability-
dc.subjectcontrolled study-
dc.subjectcross linking-
dc.subjectcytotoxicity-
dc.subjectdisulfide bond-
dc.subjectdown regulation-
dc.subjectdrug delivery system-
dc.subjectendocytosis-
dc.subjectenzymatic degradation-
dc.subjectflow cytometry-
dc.subjectfluorescence imaging-
dc.subjectgel electrophoresis-
dc.subjectgene silencing-
dc.subjecthuman-
dc.subjecthuman cell-
dc.subjectintracellular transport-
dc.subjectmacropinocytosis-
dc.subjectmale-
dc.subjectmolecular weight-
dc.subjectmouse-
dc.subjectnonhuman-
dc.subjectparticle size-
dc.subjectphysical chemistry-
dc.subjectpriority journal-
dc.subjectpromoter region-
dc.subjectprostate cancer-
dc.subjectRNA interference-
dc.subjectRNAi therapeutics-
dc.subjectscanning electron microscopy-
dc.subjectstatic electricity-
dc.subjectsurface charge-
dc.subjectSVEC4-10 cell line-
dc.subjecttumor volume-
dc.titleEnhancing Systemic Delivery of Enzymatically Generated RNAi Nanocomplexes for Cancer Therapy-
dc.typeArticle-
dc.identifier.doi10.1002/adtp.201900014-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Therapeutics, v.2, no.6-
dc.citation.titleAdvanced Therapeutics-
dc.citation.volume2-
dc.citation.number6-
dc.description.journalRegisteredClassscopus-
dc.identifier.scopusid2-s2.0-85086312942-
dc.type.docTypeArticle-
dc.subject.keywordPluschitosan derivative-
dc.subject.keywordPluscircular DNA-
dc.subject.keywordPluspolyelectrolyte-
dc.subject.keywordPlussmall interfering RNA-
dc.subject.keywordPlusvasculotropin-
dc.subject.keywordPlusanimal experiment-
dc.subject.keywordPlusanimal model-
dc.subject.keywordPlusantineoplastic activity-
dc.subject.keywordPlusapoptosis-
dc.subject.keywordPlusArticle-
dc.subject.keywordPluscancer inhibition-
dc.subject.keywordPluscancer therapy-
dc.subject.keywordPluscell viability-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPluscross linking-
dc.subject.keywordPluscytotoxicity-
dc.subject.keywordPlusdisulfide bond-
dc.subject.keywordPlusdown regulation-
dc.subject.keywordPlusdrug delivery system-
dc.subject.keywordPlusendocytosis-
dc.subject.keywordPlusenzymatic degradation-
dc.subject.keywordPlusflow cytometry-
dc.subject.keywordPlusfluorescence imaging-
dc.subject.keywordPlusgel electrophoresis-
dc.subject.keywordPlusgene silencing-
dc.subject.keywordPlushuman-
dc.subject.keywordPlushuman cell-
dc.subject.keywordPlusintracellular transport-
dc.subject.keywordPlusmacropinocytosis-
dc.subject.keywordPlusmale-
dc.subject.keywordPlusmolecular weight-
dc.subject.keywordPlusmouse-
dc.subject.keywordPlusnonhuman-
dc.subject.keywordPlusparticle size-
dc.subject.keywordPlusphysical chemistry-
dc.subject.keywordPluspriority journal-
dc.subject.keywordPluspromoter region-
dc.subject.keywordPlusprostate cancer-
dc.subject.keywordPlusRNA interference-
dc.subject.keywordPlusRNAi therapeutics-
dc.subject.keywordPlusscanning electron microscopy-
dc.subject.keywordPlusstatic electricity-
dc.subject.keywordPlussurface charge-
dc.subject.keywordPlusSVEC4-10 cell line-
dc.subject.keywordPlustumor volume-
dc.subject.keywordAuthorconcatemeric siRNA-
dc.subject.keywordAuthorrolling circle transcription-
dc.subject.keywordAuthorstructural modification-
dc.subject.keywordAuthorsystemic siRNA delivery system-
dc.subject.keywordAuthortumor-targeted delivery-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE