Full metadata record

DC Field Value Language
dc.contributor.authorLee, Won Jong-
dc.contributor.authorHwang, Yeon Jin-
dc.contributor.authorKim, Joohoon-
dc.contributor.authorJeong, Hyangsoo-
dc.contributor.authorYoon, Chang Won-
dc.date.accessioned2024-01-19T20:02:31Z-
dc.date.available2024-01-19T20:02:31Z-
dc.date.created2021-09-02-
dc.date.issued2019-05-16-
dc.identifier.issn1439-4235-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/119986-
dc.description.abstractFormic acid (HCOOH, FA) has long been considered as a promising hydrogen-storage material due to its efficient hydrogen release under mild conditions. In this work, FA decomposes to generate CO2 and H-2 selectively in the presence of aqueous Pd2+ complex solutions at 333K. Pd(NO3)(2) was the most effective in generating H-2 among various Pd2+ complexes explored. Pd2+ complexes were insitu reduced to Pd-0 species by the mixture of FA and sodium formate (SF) during the course of the reaction. Since C-H activation reaction of Pd2+-bound formate is occurred for both Pd2+ reduction and H-2/CO2 gas generation, FA decomposition pathways using several Pd2+ species were explored using density functional theory (DFT) calculations. Rotation of formate bound to Pd2+, -hydride elimination, and subsequent CO2 and H-2 elimination by formic acid were examined, providing different energies for rate determining step depending on the ligand electronics and geometries coordinated to the Pd2+ complexes. Finally, Pd2+ reduction toward Pd-0 pathways were explored computationally either by generated H-2 or reductive elimination of CO2 and H-2 gas.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectIRON-CATALYZED DEHYDROGENATION-
dc.subjectHYDROGEN GENERATION-
dc.subjectEFFICIENT CATALYST-
dc.subjectCARBON-DIOXIDE-
dc.subjectNANOPARTICLES-
dc.subjectLIGAND-
dc.subjectFUEL-
dc.titlePd2+-Initiated Formic Acid Decomposition: Plausible Pathways for C-H Activation of Formate-
dc.typeArticle-
dc.identifier.doi10.1002/cphc.201801088-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMPHYSCHEM, v.20, no.10, pp.1382 - 1391-
dc.citation.titleCHEMPHYSCHEM-
dc.citation.volume20-
dc.citation.number10-
dc.citation.startPage1382-
dc.citation.endPage1391-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000472446600021-
dc.identifier.scopusid2-s2.0-85060972082-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusIRON-CATALYZED DEHYDROGENATION-
dc.subject.keywordPlusHYDROGEN GENERATION-
dc.subject.keywordPlusEFFICIENT CATALYST-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusLIGAND-
dc.subject.keywordPlusFUEL-
dc.subject.keywordAuthordecomposition pathway-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorformic acid-
dc.subject.keywordAuthorhydrogen storage-
dc.subject.keywordAuthorpalladium-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE