High-performance Ti-doped O3-type Na[Ti-x(Ni0.6Co0.2Mn0.2)(1-x)]O-2 cathodes for practical sodium-ion batteries

Authors
Yu, Tae-YeonHwang, Jang-YeonBae, In TaeJung, Hun-GiSun, Yang-Kook
Issue Date
2019-05-15
Publisher
ELSEVIER SCIENCE BV
Citation
JOURNAL OF POWER SOURCES, v.422, pp.1 - 8
Abstract
Ti-doped O3-type Na[Ti-x(Ni0.6Co0.2Mn0.2)(1-x)]O-2 is studied as a high-performance cathode material for practical sodium-ion batteries. The effect of partial Ti doping on the structural and electrochemical properties of O3-type Na[Ni0.6Co0.2Mn0.2]O-2 materials is investigated by varying the Ti content (x) in Na[Ni0.6Co0.2Mn0.2]O-2 from 0 to 0.01 to 0.03. Scanning electron microscopy images show that upon doping, the primary particles aggregate and form densely packed secondary particles, yielding enhanced mechanical strength and high tap density of similar to 2.3 g cm(-3). The compact morphology of the particles effectively minimizes the void volume for possible electrolyte penetration that usually leads to unwanted side reactions. In addition, partial doping of Ti in the transition-metal layer greatly Improve the structural stability. By taking both morphological and structural advantages, the O3-type Na[Ti-0.03(Ni0.6Co0.2Mn0.2)(o.97)]O-2 cathode demonstrate the great enhancements of battery performances in terms of capacity, cycle retention, rate capability, and thermal properties. Pouch-type full cells assembled by combining the present cathodes with hard carbon anodes show good practical applicability, with an outstanding cycle retention of 77% over 400 cycles. The results of this study may open up a new avenue for designing and developing suitable transition metal oxide cathodes for high-performance sodium-ion batteries.
Keywords
NANI0.5MN0.5O2 CATHODE; LITHIUM; ELECTRODE; NANI0.5MN0.5O2 CATHODE; LITHIUM; ELECTRODE; Sodium-ion battery; O3-type layered structure; Cathode material; Co-precipitation; Ti-doping; Spherical morphology
ISSN
0378-7753
URI
https://pubs.kist.re.kr/handle/201004/119997
DOI
10.1016/j.jpowsour.2019.03.031
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE