Full metadata record

DC Field Value Language
dc.contributor.authorSong, Shin Ae-
dc.contributor.authorKim, Hyung Tae-
dc.contributor.authorKim, Kiyoung-
dc.contributor.authorLim, Sung Nam-
dc.contributor.authorYoon, Sung Pil-
dc.contributor.authorFang, Seong-Cheol-
dc.date.accessioned2024-01-19T20:03:15Z-
dc.date.available2024-01-19T20:03:15Z-
dc.date.created2022-01-25-
dc.date.issued2019-05-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120023-
dc.description.abstractA double-layered electrode by coating a layer of nano-sized LiNiO2 particles on a conventional electrode was fabricated to improve the performance of the cathode of the molten carbonate fuel cell. The layer consisting of nano-sized LiNiO2 particles has a larger surface area than that of the conventional electrode, which is a lithiated NiO cathode. Therefore, it can provide numerous reaction sites and has higher electrical conductivity than the lithiated NiO electrode. Consequently, the cell performance can be improved at lower operating temperatures (600 degrees C or below). The performance of the nano LiNiO2-coated cathode was examined in various ways such as by single-cell operation and electro-chemical impedance spectroscopy (EIS). The improvement in performance was demonstrated by high cell voltage of over 0.87 V at 600 degrees C and current density of 150 mA cm(-2). This result was better than 0.81 V generated by the uncoated cathode cell. In the EIS analysis, the nano LiNiO2 layer coating tended to significantly decrease the charge transfer resistance and increase the mass transfer resistance but caused an overall decrease in the cathode polarization. Thus, high performance was observed at low temperatures. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleEffect of LiNiO2-coated cathode on cell performance in molten carbonate fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2019.03.080-
dc.description.journalClass1-
dc.identifier.bibliographicCitationInternational Journal of Hydrogen Energy, v.44, no.23, pp.12085 - 12093-
dc.citation.titleInternational Journal of Hydrogen Energy-
dc.citation.volume44-
dc.citation.number23-
dc.citation.startPage12085-
dc.citation.endPage12093-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000468710100066-
dc.identifier.scopusid2-s2.0-85063762320-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusCOATED CATHODE-
dc.subject.keywordPlusHYBRID SYSTEM-
dc.subject.keywordPlusISSUES-
dc.subject.keywordPlusNIO-
dc.subject.keywordAuthorMolten carbonate fuel cells-
dc.subject.keywordAuthorTriple phase boundary-
dc.subject.keywordAuthorLarge reaction area-
dc.subject.keywordAuthorCathode polarization-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE