Full metadata record

DC Field Value Language
dc.contributor.authorLee, J.-
dc.contributor.authorKim, C.-
dc.contributor.authorPark, S.-K.-
dc.date.accessioned2024-01-19T20:04:14Z-
dc.date.available2024-01-19T20:04:14Z-
dc.date.created2021-08-31-
dc.date.issued2019-05-
dc.identifier.issn1976-5622-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120077-
dc.description.abstractMost current gait recognition approaches based on convolution neural networks (CNNs) do not learn the discriminative features of separable inter-class differences resulting from cross-view data. To improve this discriminative ability, this paper proposes a network that reduces intra-class variation using a center loss function for view-invariant gait recognition. The proposed method achieved 92% accuracy using OU-MVLP, the largest existing gait recognition dataset. Furthermore, a network trained using the OU-MVLP achieved 95% accuracy with the OU-LP. These results demonstrate that the proposed method offers a good generalization performance. ? ICROS 2019.-
dc.languageKorean-
dc.publisherInstitute of Control, Robotics and Systems-
dc.subjectConvolution-
dc.subjectGait analysis-
dc.subjectConvolution neural network-
dc.subjectDiscriminative ability-
dc.subjectDiscriminative features-
dc.subjectGait energy images-
dc.subjectGait identifications-
dc.subjectGait recognition-
dc.subjectGeneralization performance-
dc.subjectIntra-class variation-
dc.subjectPattern recognition-
dc.titleCross-view gait identification based on convolution neural network with joint loss function-
dc.typeArticle-
dc.identifier.doi10.5302/J.ICROS.2019.19.0066-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Institute of Control, Robotics and Systems, v.25, no.5, pp.463 - 469-
dc.citation.titleJournal of Institute of Control, Robotics and Systems-
dc.citation.volume25-
dc.citation.number5-
dc.citation.startPage463-
dc.citation.endPage469-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002463894-
dc.identifier.scopusid2-s2.0-85066797193-
dc.type.docTypeArticle-
dc.subject.keywordPlusConvolution-
dc.subject.keywordPlusGait analysis-
dc.subject.keywordPlusConvolution neural network-
dc.subject.keywordPlusDiscriminative ability-
dc.subject.keywordPlusDiscriminative features-
dc.subject.keywordPlusGait energy images-
dc.subject.keywordPlusGait identifications-
dc.subject.keywordPlusGait recognition-
dc.subject.keywordPlusGeneralization performance-
dc.subject.keywordPlusIntra-class variation-
dc.subject.keywordPlusPattern recognition-
dc.subject.keywordAuthorCenter loss-
dc.subject.keywordAuthorConvolution neural network-
dc.subject.keywordAuthorDiscriminative-feature learning-
dc.subject.keywordAuthorGait energy image-
dc.subject.keywordAuthorGait recognition-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE