Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, J. | - |
dc.contributor.author | Kim, C. | - |
dc.contributor.author | Park, S.-K. | - |
dc.date.accessioned | 2024-01-19T20:04:14Z | - |
dc.date.available | 2024-01-19T20:04:14Z | - |
dc.date.created | 2021-08-31 | - |
dc.date.issued | 2019-05 | - |
dc.identifier.issn | 1976-5622 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120077 | - |
dc.description.abstract | Most current gait recognition approaches based on convolution neural networks (CNNs) do not learn the discriminative features of separable inter-class differences resulting from cross-view data. To improve this discriminative ability, this paper proposes a network that reduces intra-class variation using a center loss function for view-invariant gait recognition. The proposed method achieved 92% accuracy using OU-MVLP, the largest existing gait recognition dataset. Furthermore, a network trained using the OU-MVLP achieved 95% accuracy with the OU-LP. These results demonstrate that the proposed method offers a good generalization performance. ? ICROS 2019. | - |
dc.language | Korean | - |
dc.publisher | Institute of Control, Robotics and Systems | - |
dc.subject | Convolution | - |
dc.subject | Gait analysis | - |
dc.subject | Convolution neural network | - |
dc.subject | Discriminative ability | - |
dc.subject | Discriminative features | - |
dc.subject | Gait energy images | - |
dc.subject | Gait identifications | - |
dc.subject | Gait recognition | - |
dc.subject | Generalization performance | - |
dc.subject | Intra-class variation | - |
dc.subject | Pattern recognition | - |
dc.title | Cross-view gait identification based on convolution neural network with joint loss function | - |
dc.type | Article | - |
dc.identifier.doi | 10.5302/J.ICROS.2019.19.0066 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Journal of Institute of Control, Robotics and Systems, v.25, no.5, pp.463 - 469 | - |
dc.citation.title | Journal of Institute of Control, Robotics and Systems | - |
dc.citation.volume | 25 | - |
dc.citation.number | 5 | - |
dc.citation.startPage | 463 | - |
dc.citation.endPage | 469 | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART002463894 | - |
dc.identifier.scopusid | 2-s2.0-85066797193 | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Convolution | - |
dc.subject.keywordPlus | Gait analysis | - |
dc.subject.keywordPlus | Convolution neural network | - |
dc.subject.keywordPlus | Discriminative ability | - |
dc.subject.keywordPlus | Discriminative features | - |
dc.subject.keywordPlus | Gait energy images | - |
dc.subject.keywordPlus | Gait identifications | - |
dc.subject.keywordPlus | Gait recognition | - |
dc.subject.keywordPlus | Generalization performance | - |
dc.subject.keywordPlus | Intra-class variation | - |
dc.subject.keywordPlus | Pattern recognition | - |
dc.subject.keywordAuthor | Center loss | - |
dc.subject.keywordAuthor | Convolution neural network | - |
dc.subject.keywordAuthor | Discriminative-feature learning | - |
dc.subject.keywordAuthor | Gait energy image | - |
dc.subject.keywordAuthor | Gait recognition | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.