Full metadata record

DC Field Value Language
dc.contributor.authorAlvin, Stevanus-
dc.contributor.authorYoon, Dohyeon-
dc.contributor.authorChandra, Christian-
dc.contributor.authorCahyadi, Handi Setiadi-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorChang, Wonyoung-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-19T20:30:58Z-
dc.date.available2024-01-19T20:30:58Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120155-
dc.description.abstractAlthough many studies have demonstrated the excellent potential of hard carbon as an anode in sodium ion batteries, the contribution of its active sites to the capacities of the sloping and plateau voltage regions is not yet clear. Herein, systematical investigation of the relationship between the active sites and sodium ion (Na+) storage in the sloping and plateau voltage regions was presented. In light of the physicochemical properties of the lignin-derived hard carbon (graphitization degree, interlayer spacing, micropore size distribution, and specific surface area), the results of Na+ ion diffusivity, and the change in these properties during Na+ ion insertion/extraction (as characterized by ex situ techniques), new mechanistic insights into Na+ ion storage were proposed. At the beginning of the sodiation process, Na+ ions were adsorbed on defect/edge sites; then partial micropore filling occurred in the sloping region above 0.1 V. In the plateau region below 0.1 V, Na+ ions were intercalated in the graphitic layers, and further adsorption in the micropores occurred near the cutoff potential. Furthermore, sodium clustering occurred below 0.1 V owing to the high concentration of Na+ ions in the micropores. (c) 2019 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectANODE MATERIALS-
dc.subjectELECTRODE MATERIALS-
dc.subjectLITHIUM-
dc.subjectLIGNIN-
dc.subjectINTERCALATION-
dc.subjectBATTERIES-
dc.subjectMETAL-
dc.subjectOIL-
dc.subjectLI-
dc.subjectNA-
dc.titleRevealing sodium ion storage mechanism in hard carbon-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2018.12.112-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.145, pp.67 - 81-
dc.citation.titleCARBON-
dc.citation.volume145-
dc.citation.startPage67-
dc.citation.endPage81-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000466073000009-
dc.identifier.scopusid2-s2.0-85060340085-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusLITHIUM-
dc.subject.keywordPlusLIGNIN-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusMETAL-
dc.subject.keywordPlusOIL-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusNA-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE