Full metadata record

DC Field Value Language
dc.contributor.authorShin, Dongwoon-
dc.contributor.authorKim, Jonghyun-
dc.contributor.authorChoi, Sun-
dc.contributor.authorLee, Yong-bok-
dc.contributor.authorChang, Jiyoung-
dc.date.accessioned2024-01-19T20:31:16Z-
dc.date.available2024-01-19T20:31:16Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn0960-1317-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120171-
dc.description.abstractThis study presents a novel droplet-jet mode of near-field electrospinning which allows microscale control of helix patterns using nanofiber. While the cone jet mode has been used to generate a printable nanofiber to date, the cone jet mode requires a high applied voltage with a long jet travel distance to obtain the nanofiber, resulting in a large coiling diameter. In order to integrate the near-field electrospinning into microscale devices, it is important to achieve a comparable nanofiber pattern resolution. Herein, we have demonstrated printing of nanofibers with a coiling diameter of sub-10 mu m, which is produced by the droplet-jet mode of near-field electrospinning. Also, it is found that the coiling diameter, wavelength, and frequency can be controlled by the droplet size as one of the process parameters in the droplet-jet mode. The droplet-jet mode will be a promising near-field electrospinning technique to apply direct-written nanofibers to various micro-scale applications.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.subjectELECTROHYDRODYNAMIC JET-
dc.subjectNANOFIBER-
dc.subjectOPTIMIZATION-
dc.subjectDESIGN-
dc.titleDroplet-jet mode near-field electrospinning for controlled helix patterns with sub-10 mu m coiling diameter-
dc.typeArticle-
dc.identifier.doi10.1088/1361-6439/ab025e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MICROMECHANICS AND MICROENGINEERING, v.29, no.4-
dc.citation.titleJOURNAL OF MICROMECHANICS AND MICROENGINEERING-
dc.citation.volume29-
dc.citation.number4-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000459439800001-
dc.identifier.scopusid2-s2.0-85064085564-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROHYDRODYNAMIC JET-
dc.subject.keywordPlusNANOFIBER-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordAuthornanofiber-
dc.subject.keywordAuthornear-field electrospinning-
dc.subject.keywordAuthordroplet-
dc.subject.keywordAuthorelectrohydrodynamic printing-
dc.subject.keywordAuthormicroscale printing-
dc.subject.keywordAuthordirect-writing-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE