Full metadata record

DC Field Value Language
dc.contributor.authorNam, Minwoo-
dc.contributor.authorNoh, Hye Yeon-
dc.contributor.authorKang, Joo-Han-
dc.contributor.authorCho, Junhee-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorShim, Jae Won-
dc.contributor.authorKo, Doo-Hyun-
dc.date.accessioned2024-01-19T20:31:20Z-
dc.date.available2024-01-19T20:31:20Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn2211-2855-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120174-
dc.description.abstractIn spite of enormous promise in a multitude of applications, semi-transparent organic photovoltaics (ST OPVs) relatively lag behind opaque OPVs in the efficiency, and further efforts are imperative to improve their performance while preserving their transparency and tunable color perceptivity. Here, we develop highly efficient ST OPVs based on quaternary blends (Q-blend) involving non-fullerene small molecules, and demonstrate their realistic application in four-terminal (4T) tandem PVs. The ST quaternary OPV (Q-OPV) exhibits superior power conversion efficiencies (PCEs) higher than those of the state-of-the-art ST OPVs under any irradiation conditions, while retaining high transparency and the possibility of implementing various colors. In particular, we achieve the first PCE value exceeding 15% (similar to 15.46%) under indoor lighting among the ST OPVs reported to date. The 4T tandem configurations based on a ST Q-OPV with diverse opaque PVs demonstrate broadband photon harvesting, with aesthetic functions rendered from the color-codable ST Q-OPV. The benefits of the Q-blend platform, including efficient operation under any irradiation circumstance (both indoor and outdoor lighting) and device color codability via tuning the quaternary components, can further expand the applicability of the ST Q-OPV to various practical applications.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectPOLYMER SOLAR-CELLS-
dc.subjectTANDEM POLYMER-
dc.subjectPERFORMANCE-
dc.subjectGENERATION-
dc.subjectGAP-
dc.titleSemi-transparent quaternary organic blends for advanced photovoltaic applications-
dc.typeArticle-
dc.identifier.doi10.1016/j.nanoen.2019.01.090-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANO ENERGY, v.58, pp.652 - 659-
dc.citation.titleNANO ENERGY-
dc.citation.volume58-
dc.citation.startPage652-
dc.citation.endPage659-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000461433600073-
dc.identifier.scopusid2-s2.0-85061078303-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLYMER SOLAR-CELLS-
dc.subject.keywordPlusTANDEM POLYMER-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusGAP-
dc.subject.keywordAuthorSemi-transparent organic photovoltaics-
dc.subject.keywordAuthorQuaternary blend-
dc.subject.keywordAuthorFour-terminal tandem photovoltaics-
dc.subject.keywordAuthorIndoor lighting-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE