Full metadata record

DC Field Value Language
dc.contributor.authorNagy, Roland-
dc.contributor.authorNiethammer, Matthias-
dc.contributor.authorWidmann, Matthias-
dc.contributor.authorChen, Yu-Chen-
dc.contributor.authorUdvarhelyi, Peter-
dc.contributor.authorBonato, Cristian-
dc.contributor.authorHassan, Jawad Ui-
dc.contributor.authorKarhu, Robin-
dc.contributor.authorIvanov, Ivan G.-
dc.contributor.authorNguyen Tien Son-
dc.contributor.authorMaze, Jeronimo R.-
dc.contributor.authorOhshima, Takeshi-
dc.contributor.authorSoykal, Oney O.-
dc.contributor.authorGali, Adam-
dc.contributor.authorLee, Sang-Yun-
dc.contributor.authorKaiser, Florian-
dc.contributor.authorWrachtrup, Joerg-
dc.date.accessioned2024-01-19T20:31:28Z-
dc.date.available2024-01-19T20:31:28Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120182-
dc.description.abstractScalable quantum networking requires quantum systems with quantum processing capabilities. Solid state spin systems with reliable spin-optical interfaces are a leading hardware in this regard. However, available systems suffer from large electron-phonon interaction or fast spin dephasing. Here, we demonstrate that the negatively charged silicon-vacancy centre in silicon carbide is immune to both drawbacks. Thanks to its (4)A(2) symmetry in ground and excited states, optical resonances are stable with near-Fourier-transform-limited linewidths, allowing exploitation of the spin selectivity of the optical transitions. In combination with millisecond-long spin coherence times originating from the high-purity crystal, we demonstrate high-fidelity optical initialization and coherent spin control, which we exploit to show coherent coupling to single nuclear spins with similar to 1 kHz resolution. The summary of our findings makes this defect a prime candidate for realising memory-assisted quantum network applications using semiconductor-based spin-to-photon interfaces and coherently coupled nuclear spins.-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.titleHigh-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-019-09873-9-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.10-
dc.citation.titleNature Communications-
dc.citation.volume10-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000465838600006-
dc.identifier.scopusid2-s2.0-85064900524-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSOLID-STATE SPIN-
dc.subject.keywordPlusNUCLEAR-MAGNETIC-RESONANCE-
dc.subject.keywordPlusCOHERENT CONTROL-
dc.subject.keywordPlusQUANTUM-
dc.subject.keywordPlusENTANGLEMENT-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusPHOTON-
dc.subject.keywordPlusQUBITS-
dc.subject.keywordPlus6H-
dc.subject.keywordPlus4H-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE