Full metadata record

DC Field Value Language
dc.contributor.authorOh, Joo Hyeng-
dc.contributor.authorKwon, Byeong Wan-
dc.contributor.authorCho, Jinwon-
dc.contributor.authorLee, Chan Hyun-
dc.contributor.authorKim, Min Kyeong-
dc.contributor.authorChoi, Sun Hee-
dc.contributor.authorYoon, Sung Pil-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorJang, Seung Soon-
dc.contributor.authorLee, Ki Bong-
dc.contributor.authorHam, Hyung Chul-
dc.date.accessioned2024-01-19T20:31:31Z-
dc.date.available2024-01-19T20:31:31Z-
dc.date.created2021-09-02-
dc.date.issued2019-04-
dc.identifier.issn0888-5885-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120184-
dc.description.abstractLaCrO3 perovskite and transition-metal (Co, Rh, Ir)-doped perovskite-based catalysts were fabricated using the Pechini method and applied to the dry reforming reaction of CH4 using CO2. One of the prepared perovskite-based catalysts, the LaCr0.95Ir0.05O3-delta catalyst, showed the highest CH4 conversion (81%) at 750 degrees C via the preactivation of the catalyst with H-2 gas. It also showed highly stable catalytic activity for 72 h without coke formation on the catalyst surface. Through X-ray photoelectron spectroscopy and transmission electron microscopy analyses, it is confirmed that the improved catalytic activity of the LaCr0.95Ir0.05O3-delta perovskite-based catalyst was based on the exsolution of Ir nanoparticles on the catalyst surface, which catalyzes the cleavage of the C-H bond for CH4. Density functional theory calculations revealed that the exsolution of a dopant Ir in LaCr0.95Ir0.05O3-delta is more exothermic with/without an oxygen vacancy conditin by 1.01 ev/0.43 eV, which suggests the agglomentation of Ir on the surface.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleImportance of Exsolution in Transition-Metal (Co, Rh, and Ir)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production-
dc.typeArticle-
dc.identifier.doi10.1021/acs.iecr.8b05337-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, v.58, no.16, pp.6385 - 6393-
dc.citation.titleINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH-
dc.citation.volume58-
dc.citation.number16-
dc.citation.startPage6385-
dc.citation.endPage6393-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000466053500021-
dc.identifier.scopusid2-s2.0-85064812099-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusFUEL-CELLS-
dc.subject.keywordPlusOXIDE CATALYSTS-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusNICKEL-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCOMBUSTION-
dc.subject.keywordPlusETHANOL-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordAuthorExsolution-
dc.subject.keywordAuthorDry Reforming of CH4-
dc.subject.keywordAuthorHydrogen Production-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE