Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jimin-
dc.contributor.authorSeo, Hyunseon-
dc.contributor.authorHwang, Hae Won-
dc.contributor.authorChoi, Jonghoon-
dc.contributor.authorKim, Kyeongsoo-
dc.contributor.authorJeong, Goeen-
dc.contributor.authorKim, Eun Shil-
dc.contributor.authorHan, Hyung-Seop-
dc.contributor.authorJung, Yeon-Wook-
dc.contributor.authorSeo, Youngmin-
dc.contributor.authorJeon, Hojeong-
dc.contributor.authorSeok, Hyun-Kwang-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorOk, Myoung-Ryul-
dc.date.accessioned2024-01-19T20:32:07Z-
dc.date.available2024-01-19T20:32:07Z-
dc.date.created2021-09-02-
dc.date.issued2019-03-12-
dc.identifier.issn0743-7463-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120218-
dc.description.abstractDespite significant advances in the design of metallic materials for bare metal stents (BMSs), restenosis induced by the accumulation of smooth muscle cells (SMCs) has been a major constraint on improving the clinical efficacy of stent implantation. Here, a new strategy for avoiding this issue by utilizing hydrogen peroxide (H2O2) generated by the galvanic coupling of nitinol (NiTi) stents and biodegradable magnesium-zinc (Mg-Zn) alloys is reported. The amount of H2O2 released is carefully optimized via the biodegradability engineering of the alloys and by controlling the immersion time to selectively inhibit the proliferation and function of SMCs without harming vascular endothelial cells. Based on demonstrations of its unique capabilities, a fully metallic stent with antirestenotic functionality was successfully fabricated by depositing Mg layers onto commercialized NiTi stents. The introduction of surface engineering to yield a patterned Mg coating ensured the maintenance of a stable interface between Mg and NiTi during the process of NiTi stent expansion, showing high feasibility for clinical application. This new concept of an inert metal/degradable metal hybrid system based on galvanic metal coupling, biodegradability engineering, and surface patterning can serve as a novel way to construct functional and stable BMSs for preventing restenosis.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectCORONARY STENTS-
dc.subjectADHESION-
dc.subjectSURFACE-
dc.subjectCELL-
dc.subjectRESTENOSIS-
dc.subjectFRACTURE-
dc.subjectTITANIUM-
dc.subjectTI-
dc.titleInterface Engineering of Fully Metallic Stents Enabling Controllable H2O2 Generation for Antirestenosis-
dc.typeArticle-
dc.identifier.doi10.1021/acs.langmuir.8b03753-
dc.description.journalClass1-
dc.identifier.bibliographicCitationLANGMUIR, v.35, no.10, pp.3634 - 3642-
dc.citation.titleLANGMUIR-
dc.citation.volume35-
dc.citation.number10-
dc.citation.startPage3634-
dc.citation.endPage3642-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000461532600006-
dc.identifier.scopusid2-s2.0-85062835440-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCORONARY STENTS-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusCELL-
dc.subject.keywordPlusRESTENOSIS-
dc.subject.keywordPlusFRACTURE-
dc.subject.keywordPlusTITANIUM-
dc.subject.keywordPlusTI-
dc.subject.keywordAuthorstent-
dc.subject.keywordAuthorrestenosis-
dc.subject.keywordAuthorreactive oxygen species-
dc.subject.keywordAuthorhydrogen peroxide-
dc.subject.keywordAuthorNiTi-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE