Full metadata record

DC Field Value Language
dc.contributor.authorVega-Flick, Alejandro-
dc.contributor.authorJung, Daehwan-
dc.contributor.authorYue, Shengying-
dc.contributor.authorBowers, John E.-
dc.contributor.authorLiao, Bolin-
dc.date.accessioned2024-01-19T20:32:08Z-
dc.date.available2024-01-19T20:32:08Z-
dc.date.created2021-09-02-
dc.date.issued2019-03-11-
dc.identifier.issn2475-9953-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120219-
dc.description.abstractEpitaxial growth of III-V semiconductors on Si is a promising route for silicon photonics. Threading dislocations and the residual thermal stress generated during growth are expected to affect the thermal conductivity of the III-V semiconductors, which is crucial for efficient heat dissipation from photonic devices built on this platform. In this work, we combine a noncontact laser-induced transient thermal grating technique with ab initio phonon simulations to investigate the in-plane thermal transport of epitaxial GaAs-based buffer layers on Si, employed in the fabrication of III-V quantum dot lasers. Surprisingly, we find a significant reduction of the in-plane thermal conductivity of GaAs, up to 19%, as a result of a small in-plane biaxial stress of similar to 250 MPa. Using ab initio phonon calculations, we attribute this effect to the enhancement of phonon-phonon scattering caused by the in-plane biaxial stress, which breaks the cubic crystal symmetry of GaAs. Our results indicate the importance of eliminating the residual thermal stress in the epitaxial III-V layers on Si to avoid the reduction of thermal conductivity and facilitate heat dissipation. Additionally, our results showcase potential means of effectively controlling thermal conductivity of solids with external strain/stress.-
dc.languageEnglish-
dc.publisherAMER PHYSICAL SOC-
dc.subjectQUANTUM-DOT LASERS-
dc.subjectTOTAL-ENERGY CALCULATIONS-
dc.subjectAB-INITIO-
dc.subjectFILMS-
dc.subjectTRANSPORT-
dc.subjectDYNAMICS-
dc.subjectGROWTH-
dc.titleReduced thermal conductivity of epitaxial GaAs on Si due to symmetry-breaking biaxial strain-
dc.typeArticle-
dc.identifier.doi10.1103/PhysRevMaterials.3.034603-
dc.description.journalClass1-
dc.identifier.bibliographicCitationPHYSICAL REVIEW MATERIALS, v.3, no.3-
dc.citation.titlePHYSICAL REVIEW MATERIALS-
dc.citation.volume3-
dc.citation.number3-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000461076800004-
dc.identifier.scopusid2-s2.0-85063000630-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusQUANTUM-DOT LASERS-
dc.subject.keywordPlusTOTAL-ENERGY CALCULATIONS-
dc.subject.keywordPlusAB-INITIO-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusDYNAMICS-
dc.subject.keywordPlusGROWTH-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE