Full metadata record

DC Field Value Language
dc.contributor.authorNam, Young-Hyun-
dc.contributor.authorPark, Jong-Seo-
dc.contributor.authorBaek, Un-Bong-
dc.contributor.authorSuh, Jin-Yoo-
dc.contributor.authorNcihm, Seung-Hoon-
dc.date.accessioned2024-01-19T20:32:12Z-
dc.date.available2024-01-19T20:32:12Z-
dc.date.created2021-09-02-
dc.date.issued2019-03-08-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120223-
dc.description.abstractLow-temperature mechanical properties of a high-manganese austenitic steel were evaluated with and without hydrogen pre-charging to examine the applicability of the alloy as a material for hydrogen infrastructure. The high-manganese steel, along with the conventional 304 and 316 L austenitic steels, was examined for hydrogen-related properties including hydrogen content after gas-phase pre-charging, tensile properties, and Charpy impact toughness at different temperatures ranging from room temperature to -80 and -196 degrees C, respectively, and the resultant fracture surfaces. Under hydrogen-charged conditions, the high-manganese steel showed low-temperature mechanical properties comparable to those of conventional austenitic steels, suggesting the potential of the alloy for structural applications in hydrogen environment. (C) 2019 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectAUSTENITIC STAINLESS-STEELS-
dc.subjectENVIRONMENT EMBRITTLEMENT-
dc.subjectGAS EMBRITTLEMENT-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectINTERNAL HYDROGEN-
dc.subjectDELAYED FRACTURE-
dc.subjectBEHAVIOR-
dc.subjectRESISTANCE-
dc.subjectSTRENGTH-
dc.subjectTYPE-316-
dc.titleLow-temperature tensile and impact properties of hydrogen-charged high-manganese steel-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2019.01.065-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.44, no.13, pp.7000 - 7013-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume44-
dc.citation.number13-
dc.citation.startPage7000-
dc.citation.endPage7013-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000461728700055-
dc.identifier.scopusid2-s2.0-85061604729-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusAUSTENITIC STAINLESS-STEELS-
dc.subject.keywordPlusENVIRONMENT EMBRITTLEMENT-
dc.subject.keywordPlusGAS EMBRITTLEMENT-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusINTERNAL HYDROGEN-
dc.subject.keywordPlusDELAYED FRACTURE-
dc.subject.keywordPlusBEHAVIOR-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordPlusSTRENGTH-
dc.subject.keywordPlusTYPE-316-
dc.subject.keywordAuthorHydrogen embrittlement-
dc.subject.keywordAuthorStainless steel-
dc.subject.keywordAuthorTensile strength-
dc.subject.keywordAuthorImpact energy-
dc.subject.keywordAuthorReduction of area-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE