Full metadata record

DC Field Value Language
dc.contributor.authorYoon, Inug-
dc.contributor.authorEom, Gayoung-
dc.contributor.authorLee, Sungwoo-
dc.contributor.authorKim, Bo Kyeong-
dc.contributor.authorKim, Sang Kyung-
dc.contributor.authorLee, Hyunjoo J.-
dc.date.accessioned2024-01-19T20:32:39Z-
dc.date.available2024-01-19T20:32:39Z-
dc.date.created2022-01-25-
dc.date.issued2019-03-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120248-
dc.description.abstractThe development of portable volatile organic compound (VOC) sensors is essential for home healthcare and workplace safety because VOCs are environmental pollutants that may critically affect human health. Here, we report a compact and portable sensor platform based on a capacitive micromachined ultrasonic transducer (CMUT) array offering multiplex detection of various VOCs (toluene, acetone, ethanol, and methanol) using a single read-out system. Three CMUT resonant devices were functionalized with three different layers: (1) phenyl-selective peptide, (2) colloids of single-walled nanotubes and peptide, and (3) poly(styrene-co-allyl alcohol). As each device exhibited different sensitivities to the four VOCs, we performed principal component analysis to achieve selective detection of all four gases. For the simultaneous detection of VOCs using CMUT sensors, the changes in the resonant frequencies of three devices were monitored in real time, but using only a single oscillator through an electrically controlled relay to achieve compactness. In addition, by devising a wireless system, measurement results were transmitted to a smartphone to monitor the concentration of VOCs. We used multiple sensors to obtain a larger number of fingerprints for pattern recognition to enhance selectivity but interfaced these sensors with a single read-out circuit to minimize the footprint of the overall system. The compact CMUT-based sensor array based on a multiplex detection scheme is a promising sensor platform for portable VOC monitoring.-
dc.languageEnglish-
dc.publisherMDPI-
dc.titleA Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems-
dc.typeArticle-
dc.identifier.doi10.3390/s19061401-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSENSORS, v.19, no.6-
dc.citation.titleSENSORS-
dc.citation.volume19-
dc.citation.number6-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000465520200090-
dc.identifier.scopusid2-s2.0-85063695088-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusCHEMICAL SENSOR-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorresonant gas sensor-
dc.subject.keywordAuthormultiplex detection-
dc.subject.keywordAuthorVOC-
dc.subject.keywordAuthorCMUT-
dc.subject.keywordAuthorselectivity-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE