Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Young-O | - |
dc.contributor.author | Cho, Jaehyun | - |
dc.contributor.author | Yeo, Hyeonuk | - |
dc.contributor.author | Lee, Byoung Wan | - |
dc.contributor.author | Moon, Byung Joon | - |
dc.contributor.author | Ha, Yu-Mi | - |
dc.contributor.author | Jo, Ye Rin | - |
dc.contributor.author | Jung, Yong Chae | - |
dc.date.accessioned | 2024-01-19T20:34:18Z | - |
dc.date.available | 2024-01-19T20:34:18Z | - |
dc.date.created | 2021-09-02 | - |
dc.date.issued | 2019-02-18 | - |
dc.identifier.issn | 2168-0485 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120340 | - |
dc.description.abstract | Flame retardant epoxy is closely related to the safety of a humans life against the surrounding fire threat. Flame retardant properties can be obtained by supplementing with additives, such as phosphorus compounds and nanomaterials, or synthesizing flame retardant monomers. The principle of improving flame retardancy is based on the capture of oxygen radicals and the formation of a char layer, which blocks flammable gases. This paper focuses on a flame retardant epoxy resin using naturally occurring tannic acid (TA) as a hardener, which is both an oxygen-radical quencher and a charring agent. TA is reacted with the commercially available diglycidyl ether of bisphenol A (DGEBA). The reaction between the epoxy ring of the DGEBA and multiple functional groups in TA is empirically demonstrated using dynamic scanning calorimetry (DSC) and Brillouin spectra. The most effective flame-retardant TA-DGEBA (TD) thermoset had an limiting oxygen index (LOI) value 46% higher than the control sample. This result suggests that TA-based epoxy resins could be promising flame-retardant polymers. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | MECHANICAL-PROPERTIES | - |
dc.subject | DIGLYCIDYL ETHER | - |
dc.subject | FIRE PERFORMANCE | - |
dc.subject | RESIN | - |
dc.subject | COMPOSITES | - |
dc.subject | NANOCOMPOSITES | - |
dc.subject | THERMOSETS | - |
dc.subject | MONOMER | - |
dc.title | Flame Retardant Epoxy Derived from Tannic Acid as Biobased Hardener | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acssuschemeng.8b04851 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Sustainable Chemistry & Engineering, v.7, no.4, pp.3858 - 3865 | - |
dc.citation.title | ACS Sustainable Chemistry & Engineering | - |
dc.citation.volume | 7 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 3858 | - |
dc.citation.endPage | 3865 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000459367400024 | - |
dc.identifier.scopusid | 2-s2.0-85061542082 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Green & Sustainable Science & Technology | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | MECHANICAL-PROPERTIES | - |
dc.subject.keywordPlus | DIGLYCIDYL ETHER | - |
dc.subject.keywordPlus | FIRE PERFORMANCE | - |
dc.subject.keywordPlus | RESIN | - |
dc.subject.keywordPlus | COMPOSITES | - |
dc.subject.keywordPlus | NANOCOMPOSITES | - |
dc.subject.keywordPlus | THERMOSETS | - |
dc.subject.keywordPlus | MONOMER | - |
dc.subject.keywordAuthor | Biobased materials | - |
dc.subject.keywordAuthor | Flame retardants | - |
dc.subject.keywordAuthor | Epoxy resins | - |
dc.subject.keywordAuthor | Tannic acids | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.