Full metadata record

DC Field Value Language
dc.contributor.authorAbbasi, Majid-
dc.contributor.authorPark, Ihho-
dc.contributor.authorRo, Yunjo-
dc.contributor.authorJi, Youngsu-
dc.contributor.authorAyer, Raghavan-
dc.contributor.authorShim, Jae-Hyeok-
dc.date.accessioned2024-01-19T21:00:58Z-
dc.date.available2024-01-19T21:00:58Z-
dc.date.created2021-09-02-
dc.date.issued2019-02-
dc.identifier.issn1044-5803-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120400-
dc.description.abstractHP50M heat-resistant cast austenitic steel tubes are exposed to high temperatures (i.e. 900 degrees C) for long periods (10 years or longer) in petrochemical reforming plants. Twenty-years aged tubes exhibit microstructural changes such as primary carbide transformation and growth, MC carbide transition to G-phase, and fine secondary M23C6 precipitation. Analytical electron microscopy reveals that silicon tends to segregate at austenite inter-dendritic boundaries in fresh as-cast tubes. Thermo-kinetic simulation of long-term precipitate evolution of the steel is carried out together with Si segregation compositions. The experimentally observed general trend that G-phase forms at the expense of MC carbide is successfully predicted for the Si segregation compositions after a few thousand hours of aging in a temperature range between 700 and 900 degrees C. This study demonstrates that the Si segregation plays a crucial role in the formation of G-phase in this type of heat-resistant cast steels. Additional heat-treatment experiment confirms that G-phase becomes unstable above 900 degrees C and the reverse transition to MC occurs.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE INC-
dc.subjectMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subjectREMAINING LIFE ASSESSMENT-
dc.subjectCENTRIFUGALLY CAST-
dc.subjectPRECIPITATE EVOLUTION-
dc.subjectNUMERICAL-SIMULATION-
dc.subjectSTAINLESS-STEELS-
dc.subjectMICROSTRUCTURE-
dc.subjectKINETICS-
dc.subjectCARBIDE-
dc.subjectNB-
dc.titleG-phase formation in twenty-years aged heat-resistant cast austenitic steel reformer tube-
dc.typeArticle-
dc.identifier.doi10.1016/j.matchar.2019.01.003-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS CHARACTERIZATION, v.148, pp.297 - 306-
dc.citation.titleMATERIALS CHARACTERIZATION-
dc.citation.volume148-
dc.citation.startPage297-
dc.citation.endPage306-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000458228100034-
dc.identifier.scopusid2-s2.0-85059628370-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalWebOfScienceCategoryMaterials Science, Characterization & Testing-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMULTICOMPONENT MULTIPHASE SYSTEMS-
dc.subject.keywordPlusREMAINING LIFE ASSESSMENT-
dc.subject.keywordPlusCENTRIFUGALLY CAST-
dc.subject.keywordPlusPRECIPITATE EVOLUTION-
dc.subject.keywordPlusNUMERICAL-SIMULATION-
dc.subject.keywordPlusSTAINLESS-STEELS-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusCARBIDE-
dc.subject.keywordPlusNB-
dc.subject.keywordAuthorHeat-resistant austenitic steel-
dc.subject.keywordAuthorReformer tube-
dc.subject.keywordAuthorPrecipitate-
dc.subject.keywordAuthorG-phase-
dc.subject.keywordAuthorKinetic simulation-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE