Full metadata record

DC Field Value Language
dc.contributor.authorNakhanivej, Puritut-
dc.contributor.authorYu, Xu-
dc.contributor.authorPark, Sul Ki-
dc.contributor.authorKim, Soo-
dc.contributor.authorHong, Jin-Yong-
dc.contributor.authorKim, Hae Jin-
dc.contributor.authorLee, Wonki-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorYang, Ji Eun-
dc.contributor.authorWolverton, Chris-
dc.contributor.authorKong, Jing-
dc.contributor.authorChhowalla, Manish-
dc.contributor.authorPark, Ho Seok-
dc.date.accessioned2024-01-19T21:01:31Z-
dc.date.available2024-01-19T21:01:31Z-
dc.date.created2021-09-02-
dc.date.issued2019-02-
dc.identifier.issn1476-1122-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120432-
dc.description.abstractBulk and two-dimensional black phosphorus are considered to be promising battery materials due to their high theoretical capacities of 2,600 mAh g(-1). However, their rate and cycling capabilities are limited by the intrinsic (de-)alloying mechanism. Here, we demonstrate a unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding. These redox-active sites of the oxidized black phosphorus are confined at the amorphorized heterointerface, revealing truly reversible pseudocapacitance (99% of total stored charge at 2,000 mV s(-1)). Moreover, oxidized black-phosphorus-based electrodes exhibit a capacitance of 478 F g(-1) (four times greater than black phosphorus) with a rate capability of similar to 72% (compared to 21.2% for black phosphorus) and retention of similar to 91% over 50,000 cycles. In situ spectroelectrochemical and theoretical analyses reveal a reversible change in the surface electronic structure and chemical environment of the surface-exposed P redox sites.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectRAMAN-SPECTROSCOPY-
dc.subjectANODE MATERIAL-
dc.subjectGRAPHENE-
dc.subjectLAYER-
dc.subjectCOMPOSITE-
dc.subjectSUPERCAPACITORS-
dc.subjectPERFORMANCE-
dc.subjectULTRATHIN-
dc.subjectSTORAGE-
dc.subjectOXYGEN-
dc.titleRevealing molecular-level surface redox sites of controllably oxidized black phosphorus nanosheets-
dc.typeArticle-
dc.identifier.doi10.1038/s41563-018-0230-2-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNATURE MATERIALS, v.18, no.2, pp.156 - +-
dc.citation.titleNATURE MATERIALS-
dc.citation.volume18-
dc.citation.number2-
dc.citation.startPage156-
dc.citation.endPage+-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000456325600017-
dc.identifier.scopusid2-s2.0-85058190872-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusRAMAN-SPECTROSCOPY-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusLAYER-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordPlusSUPERCAPACITORS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusULTRATHIN-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordAuthorBlack phosphorus-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE