Full metadata record

DC Field Value Language
dc.contributor.authorShin, Ju Ho-
dc.contributor.authorYu, Hyun Jung-
dc.contributor.authorAn, Heseong-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorHwang, Seung Sang-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorLee, Jong Suk-
dc.date.accessioned2024-01-19T21:02:04Z-
dc.date.available2024-01-19T21:02:04Z-
dc.date.created2021-09-02-
dc.date.issued2019-01-15-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120461-
dc.description.abstractCarbon molecular sieve (CMS) membranes are a promising candidate for natural gas processing due to their peculiar pore structure-induced excellent separation performance. Formulating ultrathin, defect-free CMS hollow fiber membranes is, however, still challenging due to damage on porous sub-structures induced by thermal relaxation of polymer chains during pyrolysis. Herein, we report a new methodology enabling high separation performance and good plasticization resistance in CMS fiber membranes by uniform integration of double-stranded polysilsesquioxanes into the polyimide matrix. Our polyimide/ladder-structured polysilsesquioxane CMS fibers substantially enhanced CO2 permeance by as much as 546% compared to the precursor fiber analogues due to the thin molecular sieve selective layer. Also, poly(dimethylsiloxane) coating delayed physical aging, still showing a high CO2 permeance of 354 GPU with CO2/CH4 selectivity of 56 after 72 days of aging. Furthermore, they exhibited excellent plasticization resistance up to a CO2 partial pressure of 13.2 bar with CO2/CH4 separation factor of 74 for an equimolar CO2/CH4 feed mixture.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectHIGH-PRESSURE-
dc.subjectPLASTICIZATION RESISTANCE-
dc.subjectGAS-PERMEABILITY-
dc.subjectCROSS-LINKING-
dc.subjectPOLYMER-
dc.subjectTRANSPORT-
dc.subjectSORPTION-
dc.titleRigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2018.10.076-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.570, pp.504 - 512-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume570-
dc.citation.startPage504-
dc.citation.endPage512-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000450325700054-
dc.identifier.scopusid2-s2.0-85055916807-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PRESSURE-
dc.subject.keywordPlusPLASTICIZATION RESISTANCE-
dc.subject.keywordPlusGAS-PERMEABILITY-
dc.subject.keywordPlusCROSS-LINKING-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusSORPTION-
dc.subject.keywordAuthorCarbon molecular sieve fibers-
dc.subject.keywordAuthorLadder-structured polysilsesquioxane-
dc.subject.keywordAuthorCO2/CH4 separation-
dc.subject.keywordAuthorPhysical aging-
dc.subject.keywordAuthorPlasticization resistance-
Appears in Collections:
KIST Article > 2019
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE