Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Guhyun | - |
dc.contributor.author | Kornijcuk, Vladimir | - |
dc.contributor.author | Kim, Dohun | - |
dc.contributor.author | Kim, Inho | - |
dc.contributor.author | Kim, Jaewook | - |
dc.contributor.author | Woo, Hyo Cheon | - |
dc.contributor.author | Kim, Jihun | - |
dc.contributor.author | Hwang, Cheol Seong | - |
dc.contributor.author | Jeong, Doo Seok | - |
dc.date.accessioned | 2024-01-19T21:03:00Z | - |
dc.date.available | 2024-01-19T21:03:00Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2019-01 | - |
dc.identifier.issn | 2169-3536 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120512 | - |
dc.description.abstract | In spite of remarkable progress in machine learning techniques, the state-of-the-art machine learning algorithms often keep machines from real-time learning (online learning) due, in part, to computational complexity in parameter optimization. As an alternative, a learning algorithm to train a memory in real time is proposed, named the Markov chain Hebbian learning algorithm. The algorithm pursues efficient use in memory during training in that: 1) the weight matrix has ternary elements (-1, 0, 1) and 2) each update follows a Markov chain-the upcoming update does not need past weight values. The algorithm was verified by two proof-of-concept tasks: image (MNIST and CIFAR-10 datasets) recognition and multiplication table memorization. Particularly, the latter bases multiplication arithmetic on memory, which may be analogous to humans' mental arithmetic. The memory-based multiplication arithmetic feasibly offers the basis of factorization, supporting novel insight into memory-based arithmetic. | - |
dc.language | English | - |
dc.publisher | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC | - |
dc.subject | SINGLE NEURONS | - |
dc.subject | DEEP | - |
dc.subject | MEMORY | - |
dc.subject | NETWORKS | - |
dc.title | Markov Chain Hebbian Learning Algorithm With Ternary Synaptic Units | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/ACCESS.2018.2890543 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | IEEE ACCESS, v.7, pp.10208 - 10223 | - |
dc.citation.title | IEEE ACCESS | - |
dc.citation.volume | 7 | - |
dc.citation.startPage | 10208 | - |
dc.citation.endPage | 10223 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000457963100001 | - |
dc.identifier.scopusid | 2-s2.0-85061094324 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Information Systems | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Telecommunications | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Telecommunications | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SINGLE NEURONS | - |
dc.subject.keywordPlus | DEEP | - |
dc.subject.keywordPlus | MEMORY | - |
dc.subject.keywordPlus | NETWORKS | - |
dc.subject.keywordAuthor | Greedy edge-wise training | - |
dc.subject.keywordAuthor | Hebbian learning | - |
dc.subject.keywordAuthor | Markov chain | - |
dc.subject.keywordAuthor | mental arithmetic | - |
dc.subject.keywordAuthor | prime factorization | - |
dc.subject.keywordAuthor | supervised learning | - |
dc.subject.keywordAuthor | ternary unit | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.