Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, Hyunjin | - |
dc.contributor.author | Byun, Dongjin | - |
dc.contributor.author | Lee, Joong Kee | - |
dc.date.accessioned | 2024-01-19T21:03:58Z | - |
dc.date.available | 2024-01-19T21:03:58Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2018-12-15 | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120566 | - |
dc.description.abstract | To overcome the low electrical conductivity and large volume expansion of a sulfur cathode during electrochemical reactions, a composite of SnO2 nanoparticles with 5-10 nm size dispersed on reduced graphene oxide (rGO) sheets and sulfur (rGO/SnO2/S) was prepared by a one-pot hydrothermal process. This cathode shows 1.2-fold higher interfacial Li ion diffusivity (1.8x10(-12) cm(2) s(-1)) than that of an rGO/S cathode (1.5x10(-12) cm(2) s(-1)). This improvement is attributed to the synergistic effect of the hybrid matrix comprising rGO sheets and SnO2. The rGO sheets provide a fast electron pathway and accommodate a large amount of sulfur. Moreover, the dispersed SnO2 nanoparticle acts as an immobilizer to prevent the dissolution of polysulfide during the electrochemical reaction. The synthesized rGO/SnO2/S cathode also exhibits an electrical resistivity of 4.4x10(-1) Omega cm due to interfacial modification. Further, it exhibits improved electrochemical performance with an initial discharge capacity of 1591.57 mA h g(-1) at 0.1 C, which stabilizes to 606.98 mA h g(-1) at 0.2 C after 100 cycles. In addition, it shows a discharge capacity of 575.45 mA h g(-1) even at a high current density of 5 C. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.subject | REDUCED GRAPHENE OXIDE | - |
dc.subject | ENHANCED ELECTROCHEMICAL PERFORMANCE | - |
dc.subject | CATHODE MATERIAL | - |
dc.subject | RATE CAPABILITY | - |
dc.subject | HOST MATERIAL | - |
dc.subject | HIGH-CAPACITY | - |
dc.subject | PARTICLES | - |
dc.subject | SHELL | - |
dc.subject | NANOPARTICLES | - |
dc.subject | SPHERES | - |
dc.title | Design and synthesis of an interfacial layer of the polysulfide immobilizer for lithium-sulfur batteries by the one-pot hydrothermal method | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.apsusc.2018.05.212 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | APPLIED SURFACE SCIENCE, v.461, pp.154 - 160 | - |
dc.citation.title | APPLIED SURFACE SCIENCE | - |
dc.citation.volume | 461 | - |
dc.citation.startPage | 154 | - |
dc.citation.endPage | 160 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000450528100028 | - |
dc.identifier.scopusid | 2-s2.0-85048459398 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | REDUCED GRAPHENE OXIDE | - |
dc.subject.keywordPlus | ENHANCED ELECTROCHEMICAL PERFORMANCE | - |
dc.subject.keywordPlus | CATHODE MATERIAL | - |
dc.subject.keywordPlus | RATE CAPABILITY | - |
dc.subject.keywordPlus | HOST MATERIAL | - |
dc.subject.keywordPlus | HIGH-CAPACITY | - |
dc.subject.keywordPlus | PARTICLES | - |
dc.subject.keywordPlus | SHELL | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | SPHERES | - |
dc.subject.keywordAuthor | Immobilizer of polysulfide | - |
dc.subject.keywordAuthor | Reduced graphene oxide (rGO) | - |
dc.subject.keywordAuthor | Tin oxide (SnO2) nano particles | - |
dc.subject.keywordAuthor | One-pot hydrothermal process | - |
dc.subject.keywordAuthor | Surface diffusion | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.