Full metadata record

DC Field Value Language
dc.contributor.authorKim, Changhyeon-
dc.contributor.authorKim, Icpyo-
dc.contributor.authorKim, Huihun-
dc.contributor.authorSadan, Milan K.-
dc.contributor.authorYeo, Hyewon-
dc.contributor.authorCho, Gyubong-
dc.contributor.authorAhn, Jaepyoung-
dc.contributor.authorAhn, Jouhyeon-
dc.contributor.authorAhn, Hyojun-
dc.date.accessioned2024-01-19T21:04:17Z-
dc.date.available2024-01-19T21:04:17Z-
dc.date.created2021-09-05-
dc.date.issued2018-12-07-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120583-
dc.description.abstractFor a next-generation sodium battery to replace lithium ion batteries, it is essential to develop an anode with a long cycle life and high rate. Sn is considered to be an ideal candidate for the anode of sodium ion batteries. Here, we report a Sn anode that exhibits ultra-long-term cycle stability with a high capacity of 554 mA h g(-1) at 10C-rate for 5000 cycles. The optimized cell configuration consists of 1,2-dimethoxyethane as the electrolyte, a double separator including a nanoporous membrane, and a Sn anode with MWCNT as a conductive additive. Its capacity retention reaches up to 99.8% and its coulombic efficiency is near 100% for 5000 cycles. Surprisingly, we have discovered that the Sn powder exhibits a self-healing phenomenon during cycling. Sn is initially pulverized into a nanometer-sized powder, and then forms a three-dimensional porous coral-like structure in which ligament-shaped micrometer-sized Sn particles are connected with a low coordination number by room temperature sintering. The coral-like structure is mechanically stable towards volume change and electrically connected. The self-healing structure and mechanism provide a direction for the design of other electrodes with alloying mechanisms.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectHIGH-PERFORMANCE ANODE-
dc.subjectGLYME-BASED ELECTROLYTE-
dc.subjectREDUCED GRAPHENE OXIDE-
dc.subjectTIN NANOPARTICLES-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectLITHIUM-ION-
dc.subjectCARBON-
dc.subjectSODIATION-
dc.subjectNANOSPHERES-
dc.subjectCOMPOSITES-
dc.titleA self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1039/c8ta09544b-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.6, no.45, pp.22809 - 22818-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume6-
dc.citation.number45-
dc.citation.startPage22809-
dc.citation.endPage22818-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000451738200045-
dc.identifier.scopusid2-s2.0-85057027306-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE ANODE-
dc.subject.keywordPlusGLYME-BASED ELECTROLYTE-
dc.subject.keywordPlusREDUCED GRAPHENE OXIDE-
dc.subject.keywordPlusTIN NANOPARTICLES-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusLITHIUM-ION-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusSODIATION-
dc.subject.keywordPlusNANOSPHERES-
dc.subject.keywordPlusCOMPOSITES-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE