Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Byeon, Young-Woon | - |
dc.contributor.author | Choi, Yong-Seok | - |
dc.contributor.author | Ahn, Jae-Pyoung | - |
dc.contributor.author | Lee, Jae-Chul | - |
dc.date.accessioned | 2024-01-19T21:04:21Z | - |
dc.date.available | 2024-01-19T21:04:21Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2018-12-05 | - |
dc.identifier.issn | 1944-8244 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120587 | - |
dc.description.abstract | High-rate performance and mechanical stability of anode materials are the two important characteristics that are necessary to develop fast-charging batteries with longevity. In the present study, we demonstrate that both high rate performance and mechanical stability of the anode can be achieved with the Na-Sn battery system. Experiments show that the sodiation rate in crystalline Sn (c-Sn) is 2-3 orders of magnitude faster than that reported for the Li Si system. Furthermore, this extraordinary rate is nearly the same regardless of the orientation of c-Sn, which can improve the cycle life by retarding the pulverization of c-Sn. Two main microstructural features responsible for the observed characteristics are identified: (1) a transformation from crystalline to amorphous phase occurring at thin layers of c-Sn near the interfacial front and (2) pipe diffusion of Na through sodiation-induced dislocations. In this study, the observed behaviors are explained by elucidating the diffusion kinetics, whereas the associated mechanistic origins are analyzed by resolving the diffusion process of Na+ near the Na/Sn interface using atomic simulations. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | IN-SITU TEM | - |
dc.subject | ELECTROCHEMICAL LITHIATION | - |
dc.subject | MOLECULAR-DYNAMICS | - |
dc.subject | DIFFUSION DYNAMICS | - |
dc.subject | SILICON NANOWIRES | - |
dc.subject | AMORPHOUS-CARBON | - |
dc.subject | EDGE DISLOCATION | - |
dc.subject | ION | - |
dc.subject | SODIUM | - |
dc.subject | LI | - |
dc.title | Isotropic Sodiation Behaviors of Ultrafast-Chargeable Tin Crystals | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsami.8b15758 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Materials & Interfaces, v.10, no.48, pp.41389 - 41397 | - |
dc.citation.title | ACS Applied Materials & Interfaces | - |
dc.citation.volume | 10 | - |
dc.citation.number | 48 | - |
dc.citation.startPage | 41389 | - |
dc.citation.endPage | 41397 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000452694100047 | - |
dc.identifier.scopusid | 2-s2.0-85057528719 | - |
dc.relation.journalWebOfScienceCategory | Nanoscience & Nanotechnology | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Science & Technology - Other Topics | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | IN-SITU TEM | - |
dc.subject.keywordPlus | ELECTROCHEMICAL LITHIATION | - |
dc.subject.keywordPlus | MOLECULAR-DYNAMICS | - |
dc.subject.keywordPlus | DIFFUSION DYNAMICS | - |
dc.subject.keywordPlus | SILICON NANOWIRES | - |
dc.subject.keywordPlus | AMORPHOUS-CARBON | - |
dc.subject.keywordPlus | EDGE DISLOCATION | - |
dc.subject.keywordPlus | ION | - |
dc.subject.keywordPlus | SODIUM | - |
dc.subject.keywordPlus | LI | - |
dc.subject.keywordAuthor | Na-ion batteries | - |
dc.subject.keywordAuthor | isotropic sodiation | - |
dc.subject.keywordAuthor | in situ experiment | - |
dc.subject.keywordAuthor | phase transition | - |
dc.subject.keywordAuthor | ultra-fast charging | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.