Full metadata record

DC Field Value Language
dc.contributor.authorByeon, Young-Woon-
dc.contributor.authorChoi, Yong-Seok-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorLee, Jae-Chul-
dc.date.accessioned2024-01-19T21:04:21Z-
dc.date.available2024-01-19T21:04:21Z-
dc.date.created2021-09-05-
dc.date.issued2018-12-05-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120587-
dc.description.abstractHigh-rate performance and mechanical stability of anode materials are the two important characteristics that are necessary to develop fast-charging batteries with longevity. In the present study, we demonstrate that both high rate performance and mechanical stability of the anode can be achieved with the Na-Sn battery system. Experiments show that the sodiation rate in crystalline Sn (c-Sn) is 2-3 orders of magnitude faster than that reported for the Li Si system. Furthermore, this extraordinary rate is nearly the same regardless of the orientation of c-Sn, which can improve the cycle life by retarding the pulverization of c-Sn. Two main microstructural features responsible for the observed characteristics are identified: (1) a transformation from crystalline to amorphous phase occurring at thin layers of c-Sn near the interfacial front and (2) pipe diffusion of Na through sodiation-induced dislocations. In this study, the observed behaviors are explained by elucidating the diffusion kinetics, whereas the associated mechanistic origins are analyzed by resolving the diffusion process of Na+ near the Na/Sn interface using atomic simulations.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.subjectIN-SITU TEM-
dc.subjectELECTROCHEMICAL LITHIATION-
dc.subjectMOLECULAR-DYNAMICS-
dc.subjectDIFFUSION DYNAMICS-
dc.subjectSILICON NANOWIRES-
dc.subjectAMORPHOUS-CARBON-
dc.subjectEDGE DISLOCATION-
dc.subjectION-
dc.subjectSODIUM-
dc.subjectLI-
dc.titleIsotropic Sodiation Behaviors of Ultrafast-Chargeable Tin Crystals-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.8b15758-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.10, no.48, pp.41389 - 41397-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume10-
dc.citation.number48-
dc.citation.startPage41389-
dc.citation.endPage41397-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000452694100047-
dc.identifier.scopusid2-s2.0-85057528719-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusIN-SITU TEM-
dc.subject.keywordPlusELECTROCHEMICAL LITHIATION-
dc.subject.keywordPlusMOLECULAR-DYNAMICS-
dc.subject.keywordPlusDIFFUSION DYNAMICS-
dc.subject.keywordPlusSILICON NANOWIRES-
dc.subject.keywordPlusAMORPHOUS-CARBON-
dc.subject.keywordPlusEDGE DISLOCATION-
dc.subject.keywordPlusION-
dc.subject.keywordPlusSODIUM-
dc.subject.keywordPlusLI-
dc.subject.keywordAuthorNa-ion batteries-
dc.subject.keywordAuthorisotropic sodiation-
dc.subject.keywordAuthorin situ experiment-
dc.subject.keywordAuthorphase transition-
dc.subject.keywordAuthorultra-fast charging-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE