Full metadata record

DC Field Value Language
dc.contributor.authorKim, Sung-Hoon-
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorSeo, Jong-Hyun-
dc.contributor.authorWhang, Dong-Mok-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorLee, Jae-Chul-
dc.date.accessioned2024-01-19T21:31:47Z-
dc.date.available2024-01-19T21:31:47Z-
dc.date.created2021-09-05-
dc.date.issued2018-11-
dc.identifier.issn1359-6454-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120729-
dc.description.abstractRecent studies have demonstrated that many metal nanowires (NWs) with low stacking-fault energies display ultrahigh strength and can accommodate large plastic strains by spreading mechanical twins throughout the entire volume of the NWs. This previous observation on the plasticity, however, is largely different from that exhibited by Al NWs. In situ tensile tests performed on the < 110 > Al NW revealed that the NW exhibited ultrahigh strength (similar to 2.7 GPa) and superelasticity (similar to 4.8%), while contrary to expectations, it failed quickly once plastic flow initiates and displayed a limited plasticity (similar to 1.2%). This low plasticity was attributed to the formation of thin-layered twins with a zigzag configuration. Upon further deformation, these twins self-locked with each other, which prevented the NWs from carrying further plastic strains. Here, by employing the in situ micro-mechanical test and the atomic simulations, we performed quantitative and comprehensive analyses to explore why Al NWs display ultrahigh strength and how twins with a zigzag configuration are formed in the Al NWs. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleDeformation twinning of ultrahigh strength aluminum nanowire-
dc.typeArticle-
dc.identifier.doi10.1016/j.actamat.2018.08.047-
dc.description.journalClass1-
dc.identifier.bibliographicCitationActa Materialia, v.160, pp.14 - 21-
dc.citation.titleActa Materialia-
dc.citation.volume160-
dc.citation.startPage14-
dc.citation.endPage21-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000447576600002-
dc.identifier.scopusid2-s2.0-85052880560-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOLECULAR-DYNAMICS SIMULATION-
dc.subject.keywordPlusCENTERED-CUBIC METALS-
dc.subject.keywordPlusFREE AU NANOWIRES-
dc.subject.keywordPlusDISLOCATION NUCLEATION-
dc.subject.keywordPlusNANOCRYSTALLINE ALUMINUM-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusFCC METALS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusAL-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorIn situ tension test-
dc.subject.keywordAuthorAluminum-
dc.subject.keywordAuthorNanowire-
dc.subject.keywordAuthorDeformation twinning-
dc.subject.keywordAuthorMD simulation-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE