Full metadata record

DC Field Value Language
dc.contributor.authorYeo, Seon Ju-
dc.contributor.authorOh, Min Jun-
dc.contributor.authorJun, Hyun Min-
dc.contributor.authorLee, Minhwan-
dc.contributor.authorBae, Jung Gun-
dc.contributor.authorKim, Yeseul-
dc.contributor.authorPark, Kyung Jin-
dc.contributor.authorLee, Seungwoo-
dc.contributor.authorLee, Daeyeon-
dc.contributor.authorWeon, Byung Mook-
dc.contributor.authorLee, Won Bo-
dc.contributor.authorKwon, Seok Joon-
dc.contributor.authorYoo, Pil J.-
dc.date.accessioned2024-01-19T21:32:19Z-
dc.date.available2024-01-19T21:32:19Z-
dc.date.created2021-09-04-
dc.date.issued2018-11-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120759-
dc.description.abstractAdvanced materials with low density and high strength impose transformative impacts in the construction, aerospace, and automobile industries. These materials can be realized by assembling well-designed modular building units (BUs) into interconnected structures. This study uses a hierarchical design strategy to demonstrate a new class of carbon-based, ultralight, strong, and even superelastic closed-cellular network structures. Here, the BUs are prepared by a multiscale design approach starting from the controlled synthesis of functionalized graphene oxide nanosheets at the molecular- and nanoscale, leading to the microfluidic fabrication of spherical solid-shelled bubbles at the microscale. Then, bubbles are strategically assembled into centimeter-scale 3D structures. Subsequently, these structures are transformed into self-interconnected and structurally reinforced closed-cellular network structures with plesiohedral cellular units through post-treatment, resulting in the generation of 3D graphene lattices with rhombic dodecahedral honeycomb structure at the centimeter-scale. The 3D graphene suprastructure concurrently exhibits the Young's modulus above 300 kPa while retaining a light density of 7.7 mg cm(-3) and sustaining the elasticity against up to 87% of the compressive strain benefiting from efficient stress dissipation through the complete space-filling closed-cellular network. The method of fabricating the 3D graphene closed-cellular structure opens a new pathway for designing lightweight, strong, and superelastic materials.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectMECHANICAL METAMATERIALS-
dc.subjectHIGHLY EFFICIENT-
dc.subjectLIGHTWEIGHT-
dc.subjectAEROGELS-
dc.subjectOXIDE-
dc.subjectRESISTANT-
dc.titleA Plesiohedral Cellular Network of Graphene Bubbles for Ultralight, Strong, and Superelastic Materials-
dc.typeArticle-
dc.identifier.doi10.1002/adma.201802997-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED MATERIALS, v.30, no.45-
dc.citation.titleADVANCED MATERIALS-
dc.citation.volume30-
dc.citation.number45-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000449819500001-
dc.identifier.scopusid2-s2.0-85052846265-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANICAL METAMATERIALS-
dc.subject.keywordPlusHIGHLY EFFICIENT-
dc.subject.keywordPlusLIGHTWEIGHT-
dc.subject.keywordPlusAEROGELS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusRESISTANT-
dc.subject.keywordAuthorclosed-cellular structures-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorlightweight materials-
dc.subject.keywordAuthormicrosolid bubbles-
dc.subject.keywordAuthorplesiohedra-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE