Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hyeongwoo-
dc.contributor.authorLee, Jong-Won-
dc.contributor.authorByun, Dongjin-
dc.contributor.authorChoi, Wonchang-
dc.date.accessioned2024-01-19T21:32:29Z-
dc.date.available2024-01-19T21:32:29Z-
dc.date.created2021-09-05-
dc.date.issued2018-10-28-
dc.identifier.issn2040-3364-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120767-
dc.description.abstractMnFe2O4@PDA-coated MWCNT coaxial nanocables are successfully designed via a simple one-pot process by utilizing the adhesion property of polydopamine (PDA) with cations in aqueous solutions and employing a modified co-precipitation synthesis at a low temperature. The incorporation of the PDA coating layer on the MWCNT leads to the well-dispersed state of the MWCNTs in the aqueous solution due to the hydrophilic functional group of the PDA coating layer. In addition, the catechol-based functional group of the PDA coating layer effectively anchors the Mn and Fe ions from the aqueous solution before the co-precipitation process, eventually resulting in the preferential and homogeneous formation of MnFe2O4 nanoparticles on the MWCNT. The final MnFe2O4@PDA-coated MWCNT electrode exhibits excellent power characteristics such as a high rate capacity of around of 367 mA h g(-1) at a 5C-rate condition (= 4585 mA g(-1)). Cycling tests reveal that the stable performance of the MnFe2O4@PDA-coated MWCNT electrode persists even after 350 cycles.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectLITHIUM-ION BATTERY-
dc.subjectENHANCED ELECTROCHEMICAL PERFORMANCE-
dc.subjectELECTRICAL ENERGY-STORAGE-
dc.subjectCARBON NANOTUBES-
dc.subjectHIGH-POWER-
dc.subjectHIGH-CAPACITY-
dc.subjectCYCLE LIFE-
dc.subjectNANOCOMPOSITE-
dc.subjectNANOCABLES-
dc.subjectCOMPOSITE-
dc.titleCoaxial-nanostructured MnFe2O4 nanoparticles on polydopamine-coated MWCNT for anode materials in rechargeable batteries-
dc.typeArticle-
dc.identifier.doi10.1039/c8nr04555k-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOSCALE, v.10, no.40-
dc.citation.titleNANOSCALE-
dc.citation.volume10-
dc.citation.number40-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000448344100007-
dc.identifier.scopusid2-s2.0-85055079634-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERY-
dc.subject.keywordPlusENHANCED ELECTROCHEMICAL PERFORMANCE-
dc.subject.keywordPlusELECTRICAL ENERGY-STORAGE-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusCYCLE LIFE-
dc.subject.keywordPlusNANOCOMPOSITE-
dc.subject.keywordPlusNANOCABLES-
dc.subject.keywordPlusCOMPOSITE-
dc.subject.keywordAuthorMnFe2O4-
dc.subject.keywordAuthorlithium-ion batteries-
dc.subject.keywordAuthoranode materials-
dc.subject.keywordAuthorcoaxial nanocable-
dc.subject.keywordAuthorMulti-walled carbon nanotubes-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE