Full metadata record

DC Field Value Language
dc.contributor.authorPark, Sunghyun-
dc.contributor.authorKim, Jongsik-
dc.contributor.authorWon, Young-June-
dc.contributor.authorKim, Chaehoon-
dc.contributor.authorChoi, Minkee-
dc.contributor.authorJung, Wonho-
dc.contributor.authorLee, Kwang Soon-
dc.contributor.authorNa, Jeong-Geol-
dc.contributor.authorCho, So-Hye-
dc.contributor.authorLee, Seung Yong-
dc.contributor.authorLee, Jong Suk-
dc.date.accessioned2024-01-19T21:32:35Z-
dc.date.available2024-01-19T21:32:35Z-
dc.date.created2021-09-05-
dc.date.issued2018-10-24-
dc.identifier.issn0888-5885-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120773-
dc.description.abstractCreating a module that achieves sustainable CO2 capture while being compatible with the existing industry is paramount in overcoming the current CO2-driven environmental issues. This paper presents the fabrication of hollow fiber sorbents (HFSs) and their respective modules to capture CO2 by the rapid thermal swing adsorption process (RTSA). Poly(amide-imide) (PAI)/microspheric SiO2 composites were fabricated with a so-called "sieve-in-a-cage" microarchitecture which promotes CO2 diffusion. More importantly, a selected amount of 1,2-epoxybutane (EB)-functionalized poly(ethylenimine) (PEI), denoted as 0.37EB-PEI, was incorporated into our PAI/SiO2 composites forming PAI/SiO2/0.37EB-PEI HFSs which enhanced the thermal stability with a moderate CO2 sorption uptake of 0.88 mmol CO2 g(-1). The resulting HFSs were assembled into a module using either stainless steel (SS) or poly(tetrafluoroethylene) (PTFE), and their respective CO2-capturing performances in the RTSA process were compared. The two modules had a comparable breakthrough CO2 capacity of 0.42 mmol CO2 g(-1) for a wet feed mixture of CO2/He/N-2 (14 mol/14 mol/72 mol) (RH 100%) and a comparable CO2 desorption efficiency (i.e., 95% desorption within 2 min) under 100% CO2 at 120 degrees C due to the presence of the 0.37EB-PEI; however, different thermal properties inherent to the modular materials caused the PTFE-based module to outperform the SS-based counterpart in terms of cooling, enabling the execution of an entire RTSA cycle within 8 min. Additionally, the PAI/SiO2/0.37EB-PEI/PTFE module maintained its breakthrough capacity of 0.42 mmol CO2 g(-1) over five consecutive RTSA cycles, confirming its good long-term stability as well.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectHOLLOW-FIBER SORBENTS-
dc.subjectCARBON-DIOXIDE CAPTURE-
dc.subjectIONIC LIQUID-
dc.subjectADSORBENTS-
dc.subjectPERFORMANCE-
dc.subjectPOLY(ETHYLENEIMINE)-
dc.subjectPOLYETHYLENEIMINE-
dc.titleEpoxide-Functionalized, Poly(ethylenimine)-Confined Silica/Polymer Module Affording Sustainable CO2 Capture in Rapid Thermal Swing Adsorption-
dc.typeArticle-
dc.identifier.doi10.1021/acs.iecr.8b01388-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, v.57, no.42, pp.13923 - 13931-
dc.citation.titleINDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH-
dc.citation.volume57-
dc.citation.number42-
dc.citation.startPage13923-
dc.citation.endPage13931-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000448755500002-
dc.identifier.scopusid2-s2.0-85054986379-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHOLLOW-FIBER SORBENTS-
dc.subject.keywordPlusCARBON-DIOXIDE CAPTURE-
dc.subject.keywordPlusIONIC LIQUID-
dc.subject.keywordPlusADSORBENTS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPOLY(ETHYLENEIMINE)-
dc.subject.keywordPlusPOLYETHYLENEIMINE-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE