Full metadata record

DC Field Value Language
dc.contributor.authorKim, Hong-Kyu-
dc.contributor.authorKim, Sung-Hoon-
dc.contributor.authorAhn, Jae-Pyoung-
dc.contributor.authorLee, Jae-Chul-
dc.date.accessioned2024-01-19T21:32:36Z-
dc.date.available2024-01-19T21:32:36Z-
dc.date.created2021-09-05-
dc.date.issued2018-10-24-
dc.identifier.issn0921-5093-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120774-
dc.description.abstractMuch of our understanding of the tendency for deformation by dislocation slip (DS) versus deformation twinning (DT) in bulk metals relies on the magnitude of the stacking fault energy (SFE). However, the criterion based only on SFE is insufficient for evaluating the deformation behavior of nanowires (NWs) and possibly nano-grained crystalline metals. Here, by employing fault energy theories and dislocation theory, we have developed a parameter that enables the quantitative analysis of the relative tendency for DS and DT in Al NWs. In situ TEM tensile tests and atomic simulations of Al NWs showed that the competition between DS and DT is sensitive to the misfit energy, crystal size, and loading direction. Additional studies were conducted on Au and Pt NWs to determine the applicability of the proposed theory to other crystals. The theory produces self-consistent results even for metals with different SFE values.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE SA-
dc.subjectMOLECULAR-DYNAMICS SIMULATION-
dc.subjectNANOCRYSTALLINE FCC METALS-
dc.subjectCOHERENT-TWIN-PROPAGATION-
dc.subjectSTACKING-FAULT ENERGIES-
dc.subjectTENSILE DEFORMATION-
dc.subjectALUMINUM-
dc.subjectAL-
dc.subjectNUCLEATION-
dc.subjectDISLOCATIONS-
dc.subjectSTEELS-
dc.titleDeformation criterion for face-centered-cubic metal nanowires-
dc.typeArticle-
dc.identifier.doi10.1016/j.msea.2018.08.108-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, v.736, pp.431 - 437-
dc.citation.titleMATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING-
dc.citation.volume736-
dc.citation.startPage431-
dc.citation.endPage437-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000447573400047-
dc.identifier.scopusid2-s2.0-85053200757-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusMOLECULAR-DYNAMICS SIMULATION-
dc.subject.keywordPlusNANOCRYSTALLINE FCC METALS-
dc.subject.keywordPlusCOHERENT-TWIN-PROPAGATION-
dc.subject.keywordPlusSTACKING-FAULT ENERGIES-
dc.subject.keywordPlusTENSILE DEFORMATION-
dc.subject.keywordPlusALUMINUM-
dc.subject.keywordPlusAL-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusDISLOCATIONS-
dc.subject.keywordPlusSTEELS-
dc.subject.keywordAuthorDeformation twinning-
dc.subject.keywordAuthorfcc metals-
dc.subject.keywordAuthorAluminum-
dc.subject.keywordAuthorIn situ TEM-
dc.subject.keywordAuthorSimulations-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE