Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lee, Yongkyu | - |
dc.contributor.author | Na, Jonggeol | - |
dc.contributor.author | Lee, Won Bo | - |
dc.date.accessioned | 2024-01-19T21:33:12Z | - |
dc.date.available | 2024-01-19T21:33:12Z | - |
dc.date.created | 2021-09-05 | - |
dc.date.issued | 2018-10-04 | - |
dc.identifier.issn | 0098-1354 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/120805 | - |
dc.description.abstract | A methodology for the robust design of an ambient-air vaporizer under time-series weather conditions is proposed. Two techniques are used to extract representative features in the time-series data. (i) The major trend of a day is rapidly identified by the discrete wavelet transform (DWT), in which a high level of Haar function reflects the trend of a day and drastically reduces the data size. (ii) The k-means clustering method groups the similar features of a year, and the reconstructed time-series dataset extracted by the centroids of clusters represents the weather conditions of a year. The results of the multi-feature-based optimization were compared with non-wavelet based and multi-period optimization by simulation under a year of data. The design structure from the feature extraction shows 22.92% better performance than the original case and is 12 times more robust in different weather conditions than clustering with raw data. (C) 2018 Elsevier Ltd. All rights reserved. | - |
dc.language | English | - |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | - |
dc.subject | HEAT-EXCHANGER NETWORKS | - |
dc.subject | LIQUEFIED NATURAL-GAS | - |
dc.subject | WAVELET TRANSFORM | - |
dc.subject | FROST GROWTH | - |
dc.subject | FLEXIBLE HEAT | - |
dc.subject | LAMINAR-FLOW | - |
dc.subject | OPTIMIZATION | - |
dc.subject | MODEL | - |
dc.subject | DENSIFICATION | - |
dc.subject | PERFORMANCE | - |
dc.title | Robust design of ambient-air vaporizer based on time-series clustering | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.compchemeng.2018.08.026 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | COMPUTERS & CHEMICAL ENGINEERING, v.118, pp.236 - 247 | - |
dc.citation.title | COMPUTERS & CHEMICAL ENGINEERING | - |
dc.citation.volume | 118 | - |
dc.citation.startPage | 236 | - |
dc.citation.endPage | 247 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000447783500017 | - |
dc.identifier.scopusid | 2-s2.0-85052159389 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | HEAT-EXCHANGER NETWORKS | - |
dc.subject.keywordPlus | LIQUEFIED NATURAL-GAS | - |
dc.subject.keywordPlus | WAVELET TRANSFORM | - |
dc.subject.keywordPlus | FROST GROWTH | - |
dc.subject.keywordPlus | FLEXIBLE HEAT | - |
dc.subject.keywordPlus | LAMINAR-FLOW | - |
dc.subject.keywordPlus | OPTIMIZATION | - |
dc.subject.keywordPlus | MODEL | - |
dc.subject.keywordPlus | DENSIFICATION | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordAuthor | Ambient air vaporizer | - |
dc.subject.keywordAuthor | Wavelet transform | - |
dc.subject.keywordAuthor | k-means clustering | - |
dc.subject.keywordAuthor | Feature extraction | - |
dc.subject.keywordAuthor | Robust design | - |
dc.subject.keywordAuthor | Global sensitivity analysis | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.