Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yongkyu-
dc.contributor.authorNa, Jonggeol-
dc.contributor.authorLee, Won Bo-
dc.date.accessioned2024-01-19T21:33:12Z-
dc.date.available2024-01-19T21:33:12Z-
dc.date.created2021-09-05-
dc.date.issued2018-10-04-
dc.identifier.issn0098-1354-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120805-
dc.description.abstractA methodology for the robust design of an ambient-air vaporizer under time-series weather conditions is proposed. Two techniques are used to extract representative features in the time-series data. (i) The major trend of a day is rapidly identified by the discrete wavelet transform (DWT), in which a high level of Haar function reflects the trend of a day and drastically reduces the data size. (ii) The k-means clustering method groups the similar features of a year, and the reconstructed time-series dataset extracted by the centroids of clusters represents the weather conditions of a year. The results of the multi-feature-based optimization were compared with non-wavelet based and multi-period optimization by simulation under a year of data. The design structure from the feature extraction shows 22.92% better performance than the original case and is 12 times more robust in different weather conditions than clustering with raw data. (C) 2018 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.subjectHEAT-EXCHANGER NETWORKS-
dc.subjectLIQUEFIED NATURAL-GAS-
dc.subjectWAVELET TRANSFORM-
dc.subjectFROST GROWTH-
dc.subjectFLEXIBLE HEAT-
dc.subjectLAMINAR-FLOW-
dc.subjectOPTIMIZATION-
dc.subjectMODEL-
dc.subjectDENSIFICATION-
dc.subjectPERFORMANCE-
dc.titleRobust design of ambient-air vaporizer based on time-series clustering-
dc.typeArticle-
dc.identifier.doi10.1016/j.compchemeng.2018.08.026-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCOMPUTERS & CHEMICAL ENGINEERING, v.118, pp.236 - 247-
dc.citation.titleCOMPUTERS & CHEMICAL ENGINEERING-
dc.citation.volume118-
dc.citation.startPage236-
dc.citation.endPage247-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000447783500017-
dc.identifier.scopusid2-s2.0-85052159389-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHEAT-EXCHANGER NETWORKS-
dc.subject.keywordPlusLIQUEFIED NATURAL-GAS-
dc.subject.keywordPlusWAVELET TRANSFORM-
dc.subject.keywordPlusFROST GROWTH-
dc.subject.keywordPlusFLEXIBLE HEAT-
dc.subject.keywordPlusLAMINAR-FLOW-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusDENSIFICATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordAuthorAmbient air vaporizer-
dc.subject.keywordAuthorWavelet transform-
dc.subject.keywordAuthork-means clustering-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorRobust design-
dc.subject.keywordAuthorGlobal sensitivity analysis-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE