Full metadata record

DC Field Value Language
dc.contributor.authorKim, In Ho-
dc.contributor.authorYun, Taeyeong-
dc.contributor.authorKim, Jae-Eun-
dc.contributor.authorYu, Hayoung-
dc.contributor.authorSasikala, Suchithra Padmajan-
dc.contributor.authorLee, Kyung Eun-
dc.contributor.authorKoo, Sung Hwan-
dc.contributor.authorHwang, Hoseong-
dc.contributor.authorJung, Hong Ju-
dc.contributor.authorPark, Jeong Young-
dc.contributor.authorJeong, Hyeon Su-
dc.contributor.authorKim, Sang Ouk-
dc.date.accessioned2024-01-19T21:33:14Z-
dc.date.available2024-01-19T21:33:14Z-
dc.date.created2021-09-04-
dc.date.issued2018-10-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120807-
dc.description.abstractInspired by mussel adhesive polydopamine (PDA), effective reinforcement of graphene-based liquid crystalline fibers to attain high mechanical and electrical properties simultaneously is presented. The two-step defect engineering, relying on bioinspired surface polymerization and subsequent solution infiltration of PDA, addresses the intrinsic limitation of graphene fibers arising from the folding and wrinkling of graphene layers during the fiber-spinning process. For a clear understanding of the mechanism of PDA-induced defect engineering, interfacial adhesion between graphene oxide sheets is straightforwardly analyzed by the atomic force microscopy pull-off test. Subsequently, PDA could be converted into an N-doped graphitic layer within the fiber structure by a mild thermal treatment such that mechanically strong fibers could be obtained without sacrificing electrical conductivity. Bioinspired graphene-based fiber holds great promise for a wide range of applications, including flexible electronics, multifunctional textiles, and wearable sensors.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleMussel-Inspired Defect Engineering of Graphene Liquid Crystalline Fibers for Synergistic Enhancement of Mechanical Strength and Electrical Conductivity-
dc.typeArticle-
dc.identifier.doi10.1002/adma.201803267-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.30, no.40-
dc.citation.titleAdvanced Materials-
dc.citation.volume30-
dc.citation.number40-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000446056700015-
dc.identifier.scopusid2-s2.0-85052643208-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusATOMIC-FORCE MICROSCOPY-
dc.subject.keywordPlusCARBON NANOTUBE FIBERS-
dc.subject.keywordPlusFUNCTIONALIZED GRAPHENE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusADHESION-
dc.subject.keywordPlusPOLYDOPAMINE-
dc.subject.keywordPlusDISPERSIONS-
dc.subject.keywordPlusNANOSHEETS-
dc.subject.keywordPlusPOLYMER-
dc.subject.keywordPlusYARNS-
dc.subject.keywordAuthorelectrical conductivity-
dc.subject.keywordAuthorgraphene fibers-
dc.subject.keywordAuthorgraphene oxide-
dc.subject.keywordAuthormechanical strength-
dc.subject.keywordAuthorpolydopamine-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE