Full metadata record

DC Field Value Language
dc.contributor.authorJo, Young Suk-
dc.contributor.authorCha, Junyoung-
dc.contributor.authorLee, Chan Hyun-
dc.contributor.authorJeong, Hyangsoo-
dc.contributor.authorYoon, Chang Won-
dc.contributor.authorNam, Suk Woo-
dc.contributor.authorHan, Jonghee-
dc.date.accessioned2024-01-19T21:33:21Z-
dc.date.available2024-01-19T21:33:21Z-
dc.date.created2021-09-04-
dc.date.issued2018-10-01-
dc.identifier.issn0378-7753-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120813-
dc.description.abstractConventional hydrogen production from ammonia is both energy and process intensive, requiring high temperature and independent purification units. Here, we present a compact process of energy conversion from NH3 to electricity using a novel membrane reactor, comprised of a dense metallic Pd/Ta composite membrane and Ru/La-Al2O3 pellet catalysts, and a fuel cell unit. The fabricated Pd/Ta composite membrane, having ca. 5 times higher H-2 permeability than conventional Pd-Ag membranes, can both lower NH3 dehydrogenation temperature and completely remove an additional hydrogen purification unit. Compared to a packed-bed reactor without membrane, ammonia conversion improves by 75 and 45%, respectively at 425 and 400 degrees C, and > 99.5% of conversion is achieved at 450 degrees C under pressurized ammonia feed of 6.5 bar. Main barriers of practical application of Pd/Group V metals as a composite hydrogen permeable membrane, embrittlement and durability issues, are overcome owing to pertinent operating temperatures (400-450 degrees C) of ammonia dehydrogenation coupled with membrane separation. Finally, as-separated hydrogen with < 1 ppm of NH3 is provided directly to a polymer electrolyte membrane fuel cell, showing no performance degradation for an extended time of operation. The combined results suggest a feasible and less energy/process intensive option for producing hydrogen or electricity from ammonia.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectPALLADIUM MEMBRANES-
dc.subjectTHERMAL-DEGRADATION-
dc.subjectDECOMPOSITION-
dc.subjectGENERATION-
dc.subjectSEPARATION-
dc.subjectENERGY-
dc.subjectSIMULATION-
dc.subjectNITROGEN-
dc.subjectSYSTEM-
dc.subjectSTEAM-
dc.titleA viable membrane reactor option for sustainable hydrogen production from ammonia-
dc.typeArticle-
dc.identifier.doi10.1016/j.jpowsour.2018.08.010-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF POWER SOURCES, v.400, pp.518 - 526-
dc.citation.titleJOURNAL OF POWER SOURCES-
dc.citation.volume400-
dc.citation.startPage518-
dc.citation.endPage526-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000447555400055-
dc.identifier.scopusid2-s2.0-85052143514-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPALLADIUM MEMBRANES-
dc.subject.keywordPlusTHERMAL-DEGRADATION-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusSEPARATION-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusNITROGEN-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusSTEAM-
dc.subject.keywordAuthorHydrogen production-
dc.subject.keywordAuthorAmmonia dehydrogenation-
dc.subject.keywordAuthorFuel cell-
dc.subject.keywordAuthorMembrane reactor-
dc.subject.keywordAuthorSustainable energy conversion-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE