Full metadata record

DC Field Value Language
dc.contributor.authorAn, Hyegsoon-
dc.contributor.authorLee, Hae-Weon-
dc.contributor.authorKim, Byung-Kook-
dc.contributor.authorSon, Ji-Won-
dc.contributor.authorYoon, Kyung Joong-
dc.contributor.authorKim, Hyoungchul-
dc.contributor.authorShin, Dongwook-
dc.contributor.authorJi, Ho-Il-
dc.contributor.authorLee, Jong-Ho-
dc.date.accessioned2024-01-19T21:33:58Z-
dc.date.available2024-01-19T21:33:58Z-
dc.date.created2021-09-05-
dc.date.issued2018-10-
dc.identifier.issn2058-7546-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120848-
dc.description.abstractIn spite of various advantages of protonic ceramic fuel cells over conventional fuel cells, distinct scepticism currently remains about their applicability because of lower-than-predicted performance and difficulty with scale-up. These challenges mainly stem from the refractory nature of proton-conducting ceramic electrolytes and the low chemical stability of these materials during the sintering process. Here, we present the fabrication of a physically thin, structurally dense and chemically homogeneous electrolyte, BaCe0.55Zr0.3Y0.15O3-delta (BCZY3), through a facile anode-assisted densification of the electrolyte on a structurally and compositionally uniform anode support, which resulted in breakthroughs in performance and scalability. A BCZY3-based protonic ceramic fuel cell with a size of 5 x 5 cm(2) exhibits an area-specific ohmic resistance of 0.09 Omega cm(2) and delivers a power as high as 20.8W per single cell at 600 degrees C.-
dc.languageEnglish-
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectHIGH-PERFORMANCE-
dc.subjectNEXT-GENERATION-
dc.subjectCONDUCTOR-
dc.subjectCATHODE-
dc.subjectBAZR0.1CE0.7Y0.1YB0.1O3-DELTA-
dc.subjectBA0.5SR0.5CO0.8FE0.2O3-DELTA-
dc.subjectELECTROLYTE-
dc.subjectOXIDES-
dc.subjectSOFCS-
dc.titleA 5 x 5 cm(2) protonic ceramic fuel cell with a power density of 1.3 W cm(-2) at 600 degrees C-
dc.typeArticle-
dc.identifier.doi10.1038/s41560-018-0230-0-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNATURE ENERGY, v.3, no.10, pp.870 - 875-
dc.citation.titleNATURE ENERGY-
dc.citation.volume3-
dc.citation.number10-
dc.citation.startPage870-
dc.citation.endPage875-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000446724600017-
dc.identifier.scopusid2-s2.0-85053061616-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusNEXT-GENERATION-
dc.subject.keywordPlusCONDUCTOR-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusBAZR0.1CE0.7Y0.1YB0.1O3-DELTA-
dc.subject.keywordPlusBA0.5SR0.5CO0.8FE0.2O3-DELTA-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordPlusOXIDES-
dc.subject.keywordPlusSOFCS-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE