Full metadata record

DC Field Value Language
dc.contributor.authorChae, Soo Sang-
dc.contributor.authorJang, Seunghun-
dc.contributor.authorLee, Wonki-
dc.contributor.authorJung, Du Won-
dc.contributor.authorLee, Keun Ho-
dc.contributor.authorKim, Jung Dong-
dc.contributor.authorJeong, Dohyeon-
dc.contributor.authorChang, Hyunju-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorLee, Jeong-O.-
dc.date.accessioned2024-01-19T21:34:44Z-
dc.date.available2024-01-19T21:34:44Z-
dc.date.created2021-09-05-
dc.date.issued2018-09-27-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120889-
dc.description.abstractControlled nucleation and growth of metal clusters in metal deposition processes is a long-standing issue for thin-film-based electronic devices. When metal atoms are deposited on solid surfaces, unintended defects sites always lead to a heterogeneous nucleation, resulting in a spatially nonuniform nucleation with irregular growth rates for individual nuclei, resulting in a rough film that requires a thicker film to be deposited to reach the percolation threshold. In the present study, it is shown that substrate-supported graphene promotes the lateral 2D growth of metal atoms on the graphene. Transmission electron microscopy reveals that 2D metallic single crystals are grown epitaxially on supported graphene surfaces while a pristine graphene layer hardly yields any metal nucleation. A surface energy barrier calculation based on density functional theory predicts a suppression of diffusion of metal atoms on electronically perturbed graphene (supported graphene). 2D single Au crystals grown on supported graphene surfaces exhibit unusual near-infrared plasmonic resonance, and the unique 2D growth of metal crystals and self-healing nature of graphene lead to the formation of ultrathin, semitransparent, and biodegradable metallic thin films that could be utilized in various biomedical applications.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectGOLD NANOPARTICLES-
dc.subjectTHIN-FILMS-
dc.subjectTRANSPARENCY-
dc.subjectNUCLEATION-
dc.subjectDEPOSITION-
dc.subjectTEMPLATE-
dc.subjectCLUSTERS-
dc.subjectTHERAPY-
dc.subjectOXIDE-
dc.subjectHOPG-
dc.titleUltrathin Metal Crystals: Growth on Supported Graphene Surfaces and Applications-
dc.typeArticle-
dc.identifier.doi10.1002/smll.201801529-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSMALL, v.14, no.39-
dc.citation.titleSMALL-
dc.citation.volume14-
dc.citation.number39-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000445626600002-
dc.identifier.scopusid2-s2.0-85052796698-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusGOLD NANOPARTICLES-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusTRANSPARENCY-
dc.subject.keywordPlusNUCLEATION-
dc.subject.keywordPlusDEPOSITION-
dc.subject.keywordPlusTEMPLATE-
dc.subject.keywordPlusCLUSTERS-
dc.subject.keywordPlusTHERAPY-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusHOPG-
dc.subject.keywordAuthorcrystal growth-
dc.subject.keywordAuthorgraphene-
dc.subject.keywordAuthorphotothermal effect-
dc.subject.keywordAuthorsemitransparent conducting films-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE