Full metadata record

DC Field Value Language
dc.contributor.authorPark, Kang-Joon-
dc.contributor.authorJung, Hun-Gi-
dc.contributor.authorKuo, Liang-Yin-
dc.contributor.authorKaghazchi, Payam-
dc.contributor.authorYoon, Chong S.-
dc.contributor.authorSun, Yang-Kook-
dc.date.accessioned2024-01-19T22:00:44Z-
dc.date.available2024-01-19T22:00:44Z-
dc.date.created2021-09-03-
dc.date.issued2018-09-05-
dc.identifier.issn1614-6832-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/120927-
dc.description.abstractBoron-doped Li[Ni0.90Co0.05Mn0.05]O-2 cathodes are synthesized by adding B2O3 during the lithiation of the hydroxide precursor. Density functional theory confirms that boron doping at a level as low as 1 mol% alters the surface energies to produce a highly textured microstructure that can partially relieve the intrinsic internal strain generated during the deep charging of Li[Ni0.90Co0.05Mn0.05]O-2. The 1 mol% B-Li[Ni0.90Co0.05Mn0.05]O-2 cathode thus delivers a discharge capacity of 237 mAh g(-1) at 4.3 V, with an outstanding capacity retention of 91% after 100 cycles at 55 degrees C, which is 15% higher than that of the undoped Li[Ni0.90Co0.05Mn0.05]O-2 cathode. This proposed synthesis strategy demonstrates that an optimal microstructure exists for extending the cycle life of Ni-rich Li[Ni1-x-yCoxMny]O-2 cathodes that have an inadequate cycling stability in electric vehicle applications and indicates that an optimal microstructure can be achieved through surface energy modification.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectSAFE LITHIUM BATTERIES-
dc.subjectHIGH-ENERGY-
dc.subjectCATHODE MATERIALS-
dc.subjectSTRUCTURAL STABILITY-
dc.subjectELECTROCHEMICAL PROPERTIES-
dc.subjectSURFACE DEGRADATION-
dc.subjectNI-RICH-
dc.subjectCAPACITY-
dc.subjectGENERATION-
dc.subjectSPECTROSCOPY-
dc.titleImproved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O-2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1002/aenm.201801202-
dc.description.journalClass1-
dc.identifier.bibliographicCitationADVANCED ENERGY MATERIALS, v.8, no.25-
dc.citation.titleADVANCED ENERGY MATERIALS-
dc.citation.volume8-
dc.citation.number25-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000443674100016-
dc.identifier.scopusid2-s2.0-85050870896-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusSAFE LITHIUM BATTERIES-
dc.subject.keywordPlusHIGH-ENERGY-
dc.subject.keywordPlusCATHODE MATERIALS-
dc.subject.keywordPlusSTRUCTURAL STABILITY-
dc.subject.keywordPlusELECTROCHEMICAL PROPERTIES-
dc.subject.keywordPlusSURFACE DEGRADATION-
dc.subject.keywordPlusNI-RICH-
dc.subject.keywordPlusCAPACITY-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordAuthorboron-
dc.subject.keywordAuthorLi-ion batteries-
dc.subject.keywordAuthorNi-rich NCM cathodes-
dc.subject.keywordAuthorsurface energy-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE