Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jaeho-
dc.contributor.authorHan, Hyung-Seop-
dc.contributor.authorPark, Jimin-
dc.contributor.authorSeo, Hyunseon-
dc.contributor.authorEdwards, James-
dc.contributor.authorKim, Yu-Chan-
dc.contributor.authorOk, Myoung-Ryul-
dc.contributor.authorSeok, Hyun-Kwang-
dc.contributor.authorJeon, Hojeong-
dc.date.accessioned2024-01-19T22:03:09Z-
dc.date.available2024-01-19T22:03:09Z-
dc.date.created2021-09-03-
dc.date.issued2018-08-01-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121056-
dc.description.abstractThe effects of femtosecond (fs) laser treatment on a biocompatible Mg-Ca-Zn alloy were systemically analyzed. The fs laser altered the surface microstructure of the Mg-Ca-Zn alloy, resulting in reduced corrosion through localized melting and rapid solidification. Treatment with appropriate laser energy (500 Hz) generated an exceptionally thin modified layer (similar to 2 mu m) with a uniformly refined microstructure. Laser-induced remelting of the secondary phase reduced galvanic corrosion and prevented the occurrence of pitting corrosion, resulting in overall reduced corrosion. Results reveal that the corrosive nature of the biodegradable Mg alloy can be controlled through surface modification by a fs laser. (C) 2018 Elsevier B.V. All rights reserved.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectMAGNESIUM ALLOY-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectWEAR-RESISTANCE-
dc.subjectIN-VITRO-
dc.subjectMICROSTRUCTURE-
dc.subjectAL-
dc.subjectDEGRADATION-
dc.subjectREFINEMENT-
dc.subjectSTEEL-
dc.subjectZE41-
dc.titleCorrosion behavior of biodegradable Mg-based alloys via femtosecond laser surface melting-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2018.04.088-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.448, pp.424 - 434-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume448-
dc.citation.startPage424-
dc.citation.endPage434-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000432797100048-
dc.identifier.scopusid2-s2.0-85045574203-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMAGNESIUM ALLOY-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusWEAR-RESISTANCE-
dc.subject.keywordPlusIN-VITRO-
dc.subject.keywordPlusMICROSTRUCTURE-
dc.subject.keywordPlusAL-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusREFINEMENT-
dc.subject.keywordPlusSTEEL-
dc.subject.keywordPlusZE41-
dc.subject.keywordAuthorBiodegradable metal-
dc.subject.keywordAuthorMg alloy-
dc.subject.keywordAuthorLaser surface modification-
dc.subject.keywordAuthorFemtosecond laser-
dc.subject.keywordAuthorCorrosion property-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE