Full metadata record

DC Field Value Language
dc.contributor.authorLee, Yun Jae-
dc.contributor.authorKim, Jung Hyuk-
dc.contributor.authorHam, Sora-
dc.contributor.authorJu, Byeong-Kwon-
dc.contributor.authorChoi, Won Kook-
dc.date.accessioned2024-01-19T22:03:44Z-
dc.date.available2024-01-19T22:03:44Z-
dc.date.created2021-09-03-
dc.date.issued2018-08-
dc.identifier.issn2158-3226-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121087-
dc.description.abstractHighly dispersible nanospring single-walled carbon nanotubes (NS-CNTs) were incorporated in a P(VDF-TrFE) copolymer with up to 15 wt.% of nanofiller. The relative dielectric constant (K) of the polymer nanocomposite at 1 kHz was greatly enhanced from 12.7 to 62.5 at 11 wt.% of NS-CNTs, corresponding to a 492% increase over that of pristine P(VDF-TrFE) with only a small dielectric loss tangent (D) of 0.1. Based on two theoretical models, the Bruggeman equation and self-consistent effective medium theory (SC-EMT), experimental permittivity data for the P(VDF-TrFE) and NS-CNTs nanocomposites were simulated to estimate the dielectric constant of the NS-CNTs while changing both the shape of the nanofillers and the volume fraction of the interface when increasing the number of NS-CNTs in piled layers of P(VDF-TrFE). The number of NS-CNTs layers was counted from HR-TEM images to calculate the interfacial volume fraction, and used to infer the Eshelby tensor of the NS-CNTs in the SC-EMT model. The experimental dielectric constants of the composite films fit the Bruggeman equation and SC-EMT theory well for dielectric constants k=240-360, showing that the NS-CNTs nanofillers may be considered electrically semiconductive. (c) 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license-
dc.languageEnglish-
dc.publisherAMER INST PHYSICS-
dc.subjectPOLY(VINYLIDENE FLUORIDE)-
dc.subjectCOMPOSITES-
dc.subjectPOLARIZATION-
dc.titleModeling large permittivity of poly(vinylidenefluoride-co-trifluoroethylene) and nanospring single-walled carbon nanotube-polyvinylpyrrolidone nanocomposites-
dc.typeArticle-
dc.identifier.doi10.1063/1.5036573-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAIP ADVANCES, v.8, no.8-
dc.citation.titleAIP ADVANCES-
dc.citation.volume8-
dc.citation.number8-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000443722300040-
dc.identifier.scopusid2-s2.0-85052299357-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusPOLY(VINYLIDENE FLUORIDE)-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusPOLARIZATION-
dc.subject.keywordAuthorPVDF-TrFE-
dc.subject.keywordAuthornanospring CNTs-
dc.subject.keywordAuthordielectric constant-
dc.subject.keywordAuthorBruggeman-
dc.subject.keywordAuthorself-consistent effective mediul theory-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE