Full metadata record

DC Field Value Language
dc.contributor.authorKrishnana, N. Nambi-
dc.contributor.authorLee, Sangrae-
dc.contributor.authorGhorpade, Ravindra V.-
dc.contributor.authorKonovalova, Anastasiia-
dc.contributor.authorJang, Jong Hyun-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorHan, Haksoo-
dc.date.accessioned2024-01-19T22:04:10Z-
dc.date.available2024-01-19T22:04:10Z-
dc.date.created2021-09-03-
dc.date.issued2018-08-
dc.identifier.issn0376-7388-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121111-
dc.description.abstractCrosslinked metal oxide containing nanocomposite membranes, in which the filler also acts as crosslinker, were prepared by blending polybenzimidazole (PBI-OO) and phenylsulfonated TiO2 particles (s-TiO2). Thermal curing changes the ionically crosslinked system into a covalently crosslinked system. The synthesized s-TiO2 nanoparticles were analyzed by thermal gravimetric analysis and scanning electron microscopy. The covalently crosslinked nanocomposite membranes (c-sTiO(2)-PBI-OO) were doped with phosphoric acid (PA) for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The membrane properties, such as PA uptake, dimensional change, gel content, proton conductivity, mechanical property, and single cell performance were evaluated and compared with the properties of acid-doped c-PBI-OO. PA doped 6-c-sTiO(2)-PBI-OO (6 wt% sTiO(2)) showed the highest uptake of 392 wt%, and a proton conductivity at 160 degrees C of 98 mS cm(-1). In the fuel cell, a peak power density of 356mWcm(-2) was obtained, which is 76% higher than that of a c-PBI-OO based system (202mWcm(-2)). To evaluate the stability of the membrane performance over time, the best performing membrane was tested for over 700 h.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.titlePolybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell-
dc.typeArticle-
dc.identifier.doi10.1016/j.memsci.2018.05.006-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MEMBRANE SCIENCE, v.560, pp.11 - 20-
dc.citation.titleJOURNAL OF MEMBRANE SCIENCE-
dc.citation.volume560-
dc.citation.startPage11-
dc.citation.endPage20-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000433255000002-
dc.identifier.scopusid2-s2.0-85046869112-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusACID DOPED POLYBENZIMIDAZOLE-
dc.subject.keywordPlusPOLYMER ELECTROLYTE MEMBRANES-
dc.subject.keywordPlusEXCHANGE MEMBRANE-
dc.subject.keywordPlusPOLY(VINYLBENZYL CHLORIDE)-
dc.subject.keywordPlusPOLYSULFONE MEMBRANES-
dc.subject.keywordPlusSURFACE MODIFICATION-
dc.subject.keywordPlusPROTON CONDUCTIVITY-
dc.subject.keywordPlusSIDE-GROUPS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPYRIDINE-
dc.subject.keywordAuthorPBI-OO-
dc.subject.keywordAuthorSulfophenylated TiO2-
dc.subject.keywordAuthorThermal crosslinking-
dc.subject.keywordAuthorHT-PEMFC-
dc.subject.keywordAuthorNanocomposite membrane-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE