Full metadata record

DC Field Value Language
dc.contributor.authorJung, Jeawoo-
dc.contributor.authorChung, Young-Noon-
dc.contributor.authorPark, Hee-Young-
dc.contributor.authorHan, Jonghee-
dc.contributor.authorKim, Hyoung-Juhn-
dc.contributor.authorHenkensmeier, Dirk-
dc.contributor.authorYoo, Sung Jong-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorLee, So Young-
dc.contributor.authorSong, Kwang Ho-
dc.contributor.authorPark, Hyun S.-
dc.contributor.authorJang, Jong Hyun-
dc.date.accessioned2024-01-19T22:04:22Z-
dc.date.available2024-01-19T22:04:22Z-
dc.date.created2021-09-03-
dc.date.issued2018-08-
dc.identifier.issn0360-3199-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121123-
dc.description.abstractThe effects of varying the applied voltage and relative humidity of feed gases in degradation tests of polymer electrolyte membrane fuel cells (PEMFCs) were analyzed using electrochemical impedance spectroscopy (EIS). A transmission line model that considers the proton-transport resistance in the cathode catalyst layer was used to analyze impedance spectra obtained from degraded PEMFCs. As the applied cell voltage was increased from 1.3 to 1.5 V to induce accelerated degradation, the cell performance decayed significantly due to increased charge- and proton-transfer resistance. The PEMFC degradation was more pronounce at higher relative humidity (RH), i.e. 100% RH, as compared with that observed under 50% RH. Furthermore, changes in the charge transfer resistance of the electrode accompanied changes in the ionic conductivity in the PEMFC catalyst layer. Although the initial ionic and charge-transfer resistances in the catalyst layer were lower under higher RH conditions, the impedance results indicated that the performance degradation was more significant at higher water contents in the electrode due to the consequential carbon corrosion, especially when higher voltages, i.e. 1.5 V, were applied to the PEMFC single cell. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titleElectrochemical impedance analysis with transmission line model for accelerated carbon corrosion in polymer electrolyte membrane fuel cells-
dc.typeArticle-
dc.identifier.doi10.1016/j.ijhydene.2018.06.093-
dc.description.journalClass1-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.43, no.32, pp.15457 - 15465-
dc.citation.titleINTERNATIONAL JOURNAL OF HYDROGEN ENERGY-
dc.citation.volume43-
dc.citation.number32-
dc.citation.startPage15457-
dc.citation.endPage15465-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000441854300052-
dc.identifier.scopusid2-s2.0-85049871531-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryElectrochemistry-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaElectrochemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusCATHODE CATALYST LAYER-
dc.subject.keywordPlusIONIC-CONDUCTIVITY-
dc.subject.keywordPlusREACTION-KINETICS-
dc.subject.keywordPlusOXYGEN REDUCTION-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusSPECTROSCOPY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusASSEMBLIES-
dc.subject.keywordPlusRESISTANCE-
dc.subject.keywordAuthorPolymer electrolyte membrane fuel cell-
dc.subject.keywordAuthorElectrochemical impedance spectroscopy-
dc.subject.keywordAuthorTransmission line model-
dc.subject.keywordAuthorCathode degradation-
dc.subject.keywordAuthorIonic resistance-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE