Full metadata record

DC Field Value Language
dc.contributor.authorPark, Jaehyun-
dc.contributor.authorLee, Cheol Woo-
dc.contributor.authorJoo, Se Hun-
dc.contributor.authorPark, Ju Hyun-
dc.contributor.authorHwang, Chihyun-
dc.contributor.authorSong, Hyun-Kon-
dc.contributor.authorPark, Young Seok-
dc.contributor.authorKwak, Sang Kyu-
dc.contributor.authorAhn, Seokhoon-
dc.contributor.authorKang, Seok Ju-
dc.date.accessioned2024-01-19T22:04:56Z-
dc.date.available2024-01-19T22:04:56Z-
dc.date.created2021-09-03-
dc.date.issued2018-07-14-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121151-
dc.description.abstractEnhancing the performance of carbon-based anode materials in Li-ion battery (LIB) systems is of considerable interest in terms of next-generation LIB host electrodes, because the unique reversible intercalation-de-intercalation process of such materials ultimately facilitates increases in LIB performance and longevity. This study explored the potential of a new class of carbon-based contorted hexabenzocoronene (c-HBC) as an anode material for high-performance LIB systems. The exploitation of the polymorphic crystalline nature of c-HBC resulted in successful development of a LIB anode based on a newly found crystal phase of trigonal R3 by solvent and subsequent thermal annealing. Our in-depth analysis based on cross-sectional transmission electron microscopy, grazing incidence X-ray diffraction, and computational investigation revealed further advantages of using contorted molecules in LIB systems. For instance, the resulting electrochemical characteristics using half-cell architecture clearly reflected single-stage Li insertion behavior associated with the large interspacing and short diffusion length of c-HBC molecule during the discharging process. In addition, the battery exhibited excellent rate capability and cycle endurance, highlighting the suitability of c-HBC as an anode material for high-performance LIBs.-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectLITHIUM-ION BATTERIES-
dc.subjectDOPED GRAPHENE SHEETS-
dc.subjectHIGH-CAPACITY-
dc.subjectELECTRODE MATERIALS-
dc.subjectTHIN-FILMS-
dc.subjectSTORAGE-
dc.subjectNANO-
dc.subjectNANOCRYSTALS-
dc.subjectHYBRID-
dc.titleContorted polycyclic aromatic hydrocarbon: promising Li insertion organic anode-
dc.typeArticle-
dc.identifier.doi10.1039/c8ta03633k-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.6, no.26, pp.12589 - 12597-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume6-
dc.citation.number26-
dc.citation.startPage12589-
dc.citation.endPage12597-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000437469300043-
dc.identifier.scopusid2-s2.0-85049495504-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERIES-
dc.subject.keywordPlusDOPED GRAPHENE SHEETS-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusELECTRODE MATERIALS-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusSTORAGE-
dc.subject.keywordPlusNANO-
dc.subject.keywordPlusNANOCRYSTALS-
dc.subject.keywordPlusHYBRID-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE