Full metadata record

DC Field Value Language
dc.contributor.authorCho, Hyunjung-
dc.contributor.authorJin, Kyeong Sik-
dc.contributor.authorLee, Jaegeun-
dc.contributor.authorLee, Kun-Hong-
dc.date.accessioned2024-01-19T22:30:37Z-
dc.date.available2024-01-19T22:30:37Z-
dc.date.created2022-01-25-
dc.date.issued2018-07-
dc.identifier.issn0957-4484-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121173-
dc.description.abstractSmall angle x-ray scattering (SAXS) was used to estimate the degree of polymerization of polymer-grafted carbon nanotubes (CNTs) synthesized using a 'grafting from' method. This analysis characterizes the grafted polymer chains without cleaving them from CNTs, and provides reliable data that can complement conventional methods such as thermogravimetric analysis or transmittance electron microscopy. Acrylonitrile was polymerized from the surface of the CNTs by using redox initiation to produce poly-acrylonitrile-grafted CNTs (PAN-CNTs). Polymerization time and the initiation rate were varied to control the degree of polymerization. Radius of gyration (R-g) of PAN-CNTs was determined using the Guinier plot obtained from SAXS solution analysis. The results showed consistent values according to the polymerization condition, up to a maximum R-g = 125.70 A whereas that of pristine CNTs was 99.23 A. The dispersibility of PAN-CNTs in N,N-dimethylformamide was tested using ultraviolet-visible-near infrared spectroscopy and was confirmed to increase as the degree of polymerization increased. This analysis will be helpful to estimate the degree of polymerization of any polymer-grafted CNTs synthesized using the 'grafting from' method and to fabricate polymer/CNT composite materials.-
dc.languageEnglish-
dc.publisherIOP PUBLISHING LTD-
dc.titleEstimation of degree of polymerization of poly-acrylonitrile-grafted carbon nanotubes using Guinier plot of small angle x-ray scattering-
dc.typeArticle-
dc.identifier.doi10.1088/1361-6528/aabe5b-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNANOTECHNOLOGY, v.29, no.27-
dc.citation.titleNANOTECHNOLOGY-
dc.citation.volume29-
dc.citation.number27-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000431778200004-
dc.identifier.scopusid2-s2.0-85048233612-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusTRANSFER RADICAL POLYMERIZATION-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusFUNCTIONALIZATION-
dc.subject.keywordPlusCOMPOSITES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusFILMS-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusPOLYSTYRENE-
dc.subject.keywordPlusMORPHOLOGY-
dc.subject.keywordPlusFABRICATION-
dc.subject.keywordAuthorgrafting from-
dc.subject.keywordAuthorradius of gyration-
dc.subject.keywordAuthordispersibility-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE