Full metadata record

DC Field Value Language
dc.contributor.authorRajan, Arunkumar Chitteth-
dc.contributor.authorMishra, Avanish-
dc.contributor.authorSatsangi, Swanti-
dc.contributor.authorVaish, Rishabh-
dc.contributor.authorMizuseki, Hiroshi-
dc.contributor.authorLee, Kwang-Ryeol-
dc.contributor.authorSingh, Abhishek K.-
dc.date.accessioned2024-01-19T22:31:48Z-
dc.date.available2024-01-19T22:31:48Z-
dc.date.created2021-09-03-
dc.date.issued2018-06-26-
dc.identifier.issn0897-4756-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/121238-
dc.description.abstractMXenes are two-dimensional (2D) transition metal carbides and nitrides, and are invariably metallic in pristine form. While spontaneous passivation of their reactive bare surfaces lends unprecedented functionalities, consequently a many-folds increase in number of possible functionalized MXene makes their characterization difficult. Here, we study the electronic properties of this vast class of materials by accurately estimating the band gaps using statistical learning. Using easily available properties of the MXene, namely, boiling and melting points, atomic radii, phases, bond lengths, etc., as input features, models were developed using kernel ridge (KRR), support vector (SVR), Gaussian process (GPR), and bootstrap aggregating regression algorithms. Among these, the GPR model predicts the band gap with lowest root-mean-squared error (rmse) of 0.14 eV, within seconds. Most importantly, these models do not involve the Perdew-Burke-Ernzerhof (PBE) band gap as a feature. Our results demonstrate that machine-learning models can bypass the band gap underestimation problem of local and semilocal functionals used in density functional theory (DFT) calculations, without subsequent correction using the time-consuming GW approach.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.subjectEXFOLIATION-
dc.subjectSTABILITY-
dc.subjectCARBIDES-
dc.subjectPHASE-
dc.subjectMAX-
dc.titleMachine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene-
dc.typeArticle-
dc.identifier.doi10.1021/acs.chemmater.8b00686-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCHEMISTRY OF MATERIALS, v.30, no.12, pp.4031 - 4038-
dc.citation.titleCHEMISTRY OF MATERIALS-
dc.citation.volume30-
dc.citation.number12-
dc.citation.startPage4031-
dc.citation.endPage4038-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000436909900013-
dc.identifier.scopusid2-s2.0-85048051668-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusEXFOLIATION-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusCARBIDES-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusMAX-
dc.subject.keywordAuthorMachine Learning-
dc.subject.keywordAuthorMXene-
dc.subject.keywordAuthorKernel Ridge (KRR)-
dc.subject.keywordAuthorSupport Vector (SVR)-
dc.subject.keywordAuthorGaussian Process (GPR)-
dc.subject.keywordAuthorDensity Functional Theory (DFT) Calculations-
dc.subject.keywordAuthorBand Gap-
Appears in Collections:
KIST Article > 2018
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE